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Life at low Reynolds number 

E. M. Purcell 
Lyman Laboratory, Harvard University, Cambridge, Massachusetts 02138 
(Received 12 June 1976) 

Editor's note: This is a reprint (slightly edited) of a paper of the same title that appeared in 
the book Physics and Our World: A Symposium in Honor of Victor F. Weisskopf, published 
by the American Institute of Physics (1976). The personal tone of the original talk has been 
preserved in the paper, which was itself a slightly edited transcript of a tape. The figures 
reproduce transparencies used in the talk. The demonstration involved a tall rectangular 
transparent vessel of corn syrup, projected by an overhead projector turned on its side. Some 
essential hand waving could not be reproduced. 

This is a talk that I would not, I'm afraid, have the nerve 
to give under any other circumstances. It's a story I've been 
saving up to tell Viki. Like so many of you here, I've enjoyed 
from time to time the wonderful experience of exploring 
with Viki some part of physics, or anything to which we can 
apply physics. We wander around strictly as amateurs 
equipped only with some elementary physics, and in the end, 
it turns out, we improve our understanding of the elemen
tary physics even if we don't throw much light on the other 
subjects. Now this is that kind of a subject, but I have still 
another reason for wanting to, as it were, needle Viki with 
it, because I'm going to talk for a while about viscosity. 
Viscosity in a liquid will be the dominant theme here and 
you know Viki's program of explaining everything, in
cluding the heights of mountains, with the elementary 
constants. The viscosity of a liquid is a very tough nut to 
crack, as he well knows, because when the stuff is cooled by 
merely 40 degrees, its viscosity can change by a factor 
of a million. I was really amazed by fluid viscosity in the 
early days of NMR, when it turned out that glycerine was 
just what we needed to explore the behavior of spin relax
ation. And yet if you were a little bug inside the glycerine, 
looking around, you wouldn't see much change in your 
surroundings as the glycerine cooled. Viki will say that he 
can at least predict the logarithm of the viscosity. And that, 
of course, is correct because the reason viscosity changes 
is that it's got one of these activation energy things and what 
he can predict is the order of magnitude of the exponent. 
But it's more mysterious than that, Viki, because if you look 
at the Chemical Rubber Handbook table you will find that 
there is almost no liquid with viscosity much lower than that 
of water. The viscosities have a big range but they stop at 
the same place. I don't understand that. That's what I'm 
leaving for him.1 

Now, I'm going to talk about a world which, as physicists, 
we almost never think about. The physicist hears about 
viscosity in high school when he's repeating Millikan's oil 
drop experiment and he never hears about it again, at least 
not in what I teach. And Reynolds's number, of course, is 
something for the engineers. And the low Reynolds number 
regime most engineers aren't even interested in-except 
possibly chemical engineers, in connection with fluidized 
beds, a fascinating topic I heard about from a chemical 
engineering friend at MIT. But I want to take you into the 
world of very low Reynolds number-a world which is in
habited by the overwhelming majority of the organisms in 
this room. This world is quite different from the one that 
we have developed our intuitions in. 

I might say what got me into this. To introduce something 
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that will come later, I'm going to talk partly about how 
microorganisms swim. That will not, however, turn out to 
be the only important question about them. I got into this 
through the work of a former colleague of mine at Harvard, 
Howard Berg. Berg got his Ph.D. with Norman Ramsey, 
working on a hydrogen maser, and then he went back into 
biology which had been his early love, and into cellular 
physiology. He is now at the University of Colorado at 
Boulder, and has recently participated in what seems to me 
one of the most astonishing discoveries about the questions 
we're going to talk about. So it was partly Howard's work, 
tracking E. coli and finding out this strange thing about 
them, that got me thinking about this elementary physics 
stuff. 

Well, here we go. In Fig. 1, you see an object which is 
moving through a fluid with velocity v. It has dimension a. 
In Stokes's law, the object is a sphere, but here it's anything; 
71 and p are the viscosity and density of the fluid. The ratio 
of the inertial forces to the viscous forces, as Osborne 
Reynolds pointed out slightly less than a hundred years ago, 
is given by avp/7J or aviv, where v is called the kinematic 
viscosity. It's easier to remember its dimensions: for water, 
v"" 10-2 cm2/sec. The ratio is called the Reynolds number 
and when that number is small the viscous forces dominate. 
Now there is an easy way, which I didn't realize at first, to 
see who should be interested in small Reynolds numbers. 
If you take the viscosity 71 and square it and divide by the 
density, you get a force (Fig. 2). No other dimensions come 
in at all. 712/ P is a force. For water, since 71 "" 1 0-2 and p "" 
1,712 / p "" 10-4 dyn. That is a force that will tow anything, 
large or small, with a Reynolds number of order of magni
tude 1. In other words, if you want to tow a submarine with 
Reynolds number 1 (or strictly speaking, 1/ 67r if it's a 
spherical submarine) tow it with 10-4 dyn. So it's clear in 
this case that you're interested in small Reynolds number 
if you're interested in small forces in an absolute sense. The 
only other people who are interested in low Reynolds 
number, although they usually don't have to invoke it, are 
the geophysicists. The Earth's mantle is supposed to have 
a viscosity of 1021 P. If you now work out 712/ p, the force is 
1041 dyn. That is more than 109 times the gravitational force 
that half the Earth exerts on the other half! So the conclu
sion is, of course, that in the flow of the mantle of the Earth 
the Reynolds number is very small indeed. 

Now consider things that move through a liquid (Fig. 3). 
The Reynolds number for a man swimming in water might 
be 104, if we put in reasonable dimensions. For a goldfish 
or a tiny guppy it might get down to 102. For the animals 
that we're going to be talking about, as we'll see in a mo-
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ment, it's about 10-4 or 10-5. For these animals inertia is 
totally irrelevant. We know that F = rna, but they could 
scarcely care less. I'll show you a picture of the real animals 
in a bit but we are going to be talking about objects which 
are the order of a micron in size (Fig. 4). That's a micron 
scale, not a suture, in the animal in Fig. 4. In water where 
the kinematic viscosity is 10-2 em/sec these things move 
around with a typical speed of 30 /-Lm/sec. If I have to push 
that animal to move it, and suddenly I stop pushing, how 
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far will it coast before it slows.down? The answer is, about 
0.1 A. And it takes it about 0.6 /-Lsec to slow down. I think 
this makes it clear what low Reynolds number means. In
ertia plays no role whatsoever. If you are at very low 
Reynolds number, what you are doing at the moment is 
entirely determined by the forces that are exerted on you 
at that moment, and by nothing in the past.2 

It helps to imagine under what conditions a man would 
be swimming at, say, the same Reynolds number as his own 
sperm. Well, you put him in a swimming pool that is full of 
molasses, and then you forbid him to move any part of his 
body faster than 1 em/min. Now imagine yourself in that 
condition: you're under the swimming pool in molasses, and 
now you can only move like the hands of a clock. If under 
those ground rules you are able to move a few meters in a 
couple of weeks, you may qualify as a low Reynolds number 
swimmer. 
. I want to talk about swimming at low Reynolds number 
In a very general way. What does it mean to swim? Well, 
it means simply that you are in some liquid and are allowed 
to deform your body in some manner. That's all you can do. 

~ -::=., I centipoiSe 

Figure 4. 

-~ 
~ =dx/O 

o 

- 0.1 A J 
o. ~ mlCrosec. 

oI/stCltnce 

E. M. Purcell 4 

nolte
Sticky Note
Rejected set by nolte

nolte
Sticky Note
Rejected set by nolte

nolte
Sticky Note
Rejected set by nolte

nolte
Sticky Note
Rejected set by nolte

nolte
Sticky Note
Rejected set by nolte

nolte
Sticky Note
Rejected set by nolte



Figure 5. 

Move it around and move it back. Of course, you choose 
some kind of cyclic deformation because you want to keep 
swimming, and it doesn't do any good to use a motion that 
goes to zero asymptotically. You have to keep moving. So, 
in general, we are interested in cyclic deformations of a body 
on which there are no external torques or forces except those 
exerted by the surrounding fluid. In Fig. 5, there is an object 
which has a shape shown by the solid line; it changes its 
shape to the dashed contour and then it changes back. When 
it finally gets back to its original shape, the dotted contour, 
it has moved over and rotated a little. It has been swimming. 
When it executed the cycle, a displacement resulted. If it 
repeats the cycle, it will, of course, effect the same dis
placement, and in two dimensions we'd see it progressing 
around a circle. In three dimensions its most general tra
jectory is a helix consisting of little kinks, each of which is 
the result of one cycle of shape change. 

There is a very funny thing about motion at low Reynolds 
number, which is the following. One special kind of swim
ming motion is what I call a reciprocal motion. That is to 
say, I change my body into a certain shape and then I go 
back to the original shape by going through the sequence 
in reverse. At low Reynolds number, everything reverses 
just fine. Time, in fact, makes no difference-only con fig-

Na.v/er - Stokes: 
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uration. If I change quickly or slowly, the pattern of motion 
is exactly the same. If you take the Navier-Stokes equation 
and throwaway the inertia terms, all you have left is \72v 
= P/71, where P is the pressure (Fig. 6). So, if the animal tries 
to swim by a reciprocal motion, it can't go anywhere. Fast 
or slow, it exactly retraces its trajectory and it's back where 
it started. A good example of that is a scallop. You know, 
a scallop opens its shell slowly and closes its shell fast, 
squirting out water. The moral of this is that the scallop at 
low Reynolds number is no good. It can't swim because it 
only has one hinge, and if you have only one degree of 
freedom in configuration space, you are bound to make a 
reciprocal motion. There is nothing else you can do. The 
simplest animal that can swim that way is an animal with 
two hinges. I don't know whether one exists but Fig. 7 shows 
a hypothetical one. This animal is like a boat with a rudder 
at both front and back, and nothing else. This animal can 
swim. All it has to do is go through the sequence to config
urations shown, returning to the original one at S5. Its 
configuration space, of course, is two dimensional with 
coordinates 81,82• The animal is going around a loop in that 
configuration space, and that enables it to swim. In fact, I 
worked this one out just for fun and you can prove from 
symmetry that it goes along the direction shown in the 
figure. As an exercise for the student, what is it that dis
tinguishes that direction? 

You can invent other animals that have no trouble 
swimming. We had better be able to invent them, since we 
know they exist. One you might think of first as a physicist, 
is a torus. I don't know whether there is a toroidal animal, 
bU,t whatever other physiological problems it might face, 
it clearly could swim at low Reynolds number (Fig. 8). 
Another animal might consist of two cells which were stuck 
together and were able to roll on one another by having 
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Figure S. 

some kind of attraction here while releasing there. That 
thing will "roll" along. I described it once as a combination 
caterpillar tractor and bicycle built for two, but that isn't 
the way it really works. In the animal kingdom, there are 
at least two other more common solutions to the problem 
of swimming at low Reynolds number (Fig. 9). One might 
be called the flexible oar. You see, you can't row a boat at 
low Reynolds number in molasses-if you are sub
merged-because the stiff oars are just reciprocating things. 
But if the oar is flexible, that's not true, because then the 
oar bends one way during the first half of the stroke and the 
other during the second half. That's sufficient to elude the 
theorem that got the scallop. Another method, and the one 
we'll mainly be talking about, is what I cali a corkscrew. If 
you keep turning it, that, of course, is not a reciprocal 
change in configuration space and that will propel you. At 
this point, I wish I could persuade you that the direction in 
which this helical drive will move is not obvious. Put your-

The flexible oo..r 

~ corkscrew 

Figure 9. 
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self back in that swimming pool under molasses and move 
around very, very slowly. Your intuitions about pushing 
water backwards are irrelevant. That's not what counts. 
Now, unfortunately, it turns out that the thing does move 
the way your naive, untutored, and actually incorrect 
argument would indicate, but that's just a pedagogical 
misfortune we are always running into. 

Well, lets look at some real animals (Fig. 10). This figure 
I've taken from a paper of Howard Berg that he sent me. 
Here are three real swimmers. The one we're going to be 
talking about most is the famous animal, Escherichia coli, 
at A, which is a very tiny thing. Then there are two larger 
animals. I've copied down their Latin names and they may 
be old friends to some of you here. This thing (S. volutans) 
swims by waving its body as well as its tail and roughly 
speaking, a spiral wave runs down that tail. The bacterium 
E. coli on the left is about 2 J.Lm long. The tail is the part that 
we are interested in. That's the flagellum. Some E. coli cells 
have them coming out the sides; and they may have several, 
but when they have several they tend to bundle together. 
Some cells are nonmotile and don't have flagella. They live 
perfectly well, so swimming is not an absolute necessity for 
this particular animal, but the one in the figure does swim. 
The flagellum is only about 130 A in diameter. It is much 
thinner than the cilium which is another very important 
kind of propulsive machinery. There is a beautiful article 
on cilia in this month's Scientific American. 3 Cilia are 
about 2000 A in diameter, with a rather elaborate apparatus 
inside. There's not room for such apparatus inside this fla
gellum. 

For a long time there has been interest in how the fla
gellum works. Classic work in this field was done around 
1951, as I'm sure some of you will remember, by Sir Geof
frey Taylor, the famous fluid dynamicist of Cambridge. One 
time I heard him give a fascinating lecture at the National 
Academy. Out of his pocket at the lecture he pulled his 
working model, a cylindrical body with a helical tail driven 
by a rubber-band motor inside the body. He had tested it 
in glycerine. In order to make the tail he hadn't just done 
the simple thing of having a turning corkscrew, because at 
that time nearly everyone had persuaded themselves that 
the tail doesn't rotate, it waves. Because, after all, to rotate 
you'd have to have a rotary joint back at the animal. So he 
had sheathed the turning helix with rubber tubing anchored 
to the body. The body had a keel. I remember Sir Geoffrey 
Taylor saying in his lecture that he was embarrassed that 
he hadn't put the keel on it first and he'd had to find out that 
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Ie needed it. There has since been a vast literature on this 
iubject, only a small part of which I'm familiar with. But 
It that time G. I. Taylor's paper in the Proceedings of the 
Royal Society could conclude with just three references: 
rIo Lamb, Hydrodynamics; G. I. Taylor (his previous 
Japer); G. N. Watson, Bessel Functions. That is called 
~etting in on the ground floor. 

To come now to modern times, I want to show a picture 
)f these animals swimming or tracking. This is the work of 
rIoward Berg, and I'll first describe what he did. He started 
)uilding the apparatus when he was at Harvard. He was 
nterested in studying not the actual mechanics of swim
ning at ali but a much more interesting question, namely, 
Nhy these things swim and where they swim. In particular, 
1e wanted to study chemotaxis in E. coli-seeing how they 
)ehave in gradients of nutrients and things like that. So he 
)uilt a little machine which would track a single bacterium 
.n x. y. z coordinates-just lock onto it optically arid track 
.t. He was able then to track one of these bacteria while it 
Nas behaving in its normal manner, possibly subject to the 
mfluence of gradients of one thing or another. A great ad
{antage of working with a thing like E. coli is that there are 
;0 many mutant strains that have been well studied that you 
;an use different mutants for different things. The next 
picture (Fig. 11) is one of his tracks. It shows a projection 
)n a plane of the track of one bacterium. The little dots are 
ibout 0.1 sec apart so that it was actually running along one 
Jf the legs for a second or two and the speed is typically 
20-40 /.Lm/sec. Notice that it swims for a while and then 
;tops and goes off in some other direction. We'll see later 
what that might suggest. A year ago, Howard Berg went 
Jut on a limb and wrote a paper in Nature 4 in which he 
irgued that, on the basis of available evidence, E. coli must 
;wim by rotating their flagella, not by waving them. Within 
the year a very elegant, crucial experiment by Silverman 
and Simon at UC-San Diego showed that this fact is the 
case.5,6 Their experiment involved a mutant strain of E. coli 
bacteria which don't make flagella at all but only make 
>omething called the proximal hook to which the flagella 
would have beep attached. They found that with antihook 
mtibodies they could cause these things to glue together. 
And once ih a while one of the bacteria would have its hook 
glued to the microscope slide, in which case the whole body 
rotated at constant angular velocity. And when two hooks 
glued together, the two bodies counter-rotated, as you would 
~xpect. It's a beautiful technique. Howard was ready with 
his tracker and the next picture? (Fig. 12) shows his tracker 
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following the end of one of these tethered E. coli cells which 
is stuck to the microscope slide by antibody at the place 
where the flagellum should have been. Plotted here are the 
two velocity components Vx and Vy . The two velocity 
components are 90° out of phase. The point being tracked 
is going in a circle. In the middle of the figure, you see a 90° 
phase change in one component, a reversal of rotation. They 
can rotate hundreds of revolutions at constant speed and 
then turn around and rotate the other way. Evidently the 
animal actually has a rotary joint, and has a motor inside 
that's able to drive a flagellum in one direction or the other, 
a most remarkable piece of machinery. 

I got interested in the way a rotating corkscrew can 
propel something. Let's consider propulsion in one direction 
only, parallel to the axis of the helix. The helix can translate 
and it can rotate; you can apply a force to it and a torque. 
It has a velocity v and an angular velocity n. And now re
member, at low Reynolds number everything is linear. 
When everything is linear, you expect to see matrices come 
in. Force and torque must be related by matrices with 
constant coefficients, to linear and angular velocity. I call 
this little 2 X 2 matrix the propUlsion matrix (Fig. 13). If 
I knew its elements A. B, C, D. I could then find out how 
good this rotating helix is for propelling anything. 

(to (ce..) 

Ct oryUr0 N ; Cv + 1)Sl. 

IP\ - \~ ~ I -. -----

!PI ~ 'F;' oj- )~I + )~I + I~) 

Figure 13. 
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Well, let's try to go on by making some assumptions. If 
two corkscrews or other devices on the same shaft are far 
enough from one another so that their velocity patterns 
don't interact, their propulsive matrices just add. If you 
allow me that assumption, then there is a very nice way, 
which I don't have time to explain, of proving that the 
propulsion matrix must be symmetrical (Fig. 14). So ac
tually the motion is described by only three constants, not 
four, and they are very easily measured. All you have to do 
is make a model of this thing and drop in a fluid at you are 
interested in or not, because these constants are independent 
of that. And so I did that and that's my one demonstration. 
I thought this series of talks ought to have one experiment 
and there it is. We're looking through a tank not of glycerine 
but of corn syrup, which is cheaper, quite uniform, and has 
a viscosity of about 50 P or 5000 times the viscosity of water. 
The nice part of this is you can just lick the experimental 
material off your fingers. 

Motion at low Reynolds number is very majestic, slow, 
and regular. You'll notice that the model is actually rotating 
but rather little. If that were a corkscrew moving through 
a cork of course, the pattern in projection wouldn't change. 
It's very very far from that, it's slipping, so that it sinks by 
several wavelengths while it's turning around once. If the 
matrix were diagonal, the thing would not rotate at all. So 
all you have to do is just see how much it turns as it sinks and 
you have got a handle on the off-diagonal element. A nice 
way to determine the other elements is to run two of these 
animals, one of which is a spiral and the other is two spirals, 
in series, of opposite handedness. The matrices add and with 
two spirals of opposite handedness, the propulsion matrix 
must be diagonal (Fig. 14). That's not going to rotate; it 
better not. 

The propulsive efficiency is more or less proportional to 
the square of the off-diagonal element of the matrix. The 
off-diagonal element depnds on the difference between the 
drag on a wire moving perpendicular to its length and the 
drag on a wire moving parallel to its length (Fig. 15). These 
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are supposed to differ in a certain limit by a factor of 2. But 
for the models I've tested that factor is more like 1.5. Since 
it's that factor minus 1 that counts, that's very bad for ef
ficiency. We thought that if you want something to rotate 
more while sinking, it would be better not to use a round 
wire. Something like a slinky ought to be better. I made one 
~nd measured its off diagonal elements. Surprise, surprise, 
It was no better at all! I don't really understand that, because 
the fluid mechanics of these two situations is not at all 
simple. In each case there is a logarithmic divergence that 
you have to worry about, and the two are somewhat dif
ferent in character. So that theoretical ratio of two I re
ferred to is probably not even right. 

When you put all this in and calculate the efficiency, you 
find that it's really rather low even when the various pa
rameters of the model are optimized. For a sphere which 
is driven by one of these helical propeilers (Fig. 16), I will 

PROP/JLSIVE EFFICIENCY ~ I % 
Figure 16. 
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define the efficiency as the ratio of the work that I would 
have to do just to pull that thing along to what the man in
,ide it turning the crank has to do. And that turns out to be 
about I %. I worried about that result for a while and tried 
to get Howard interested in it. He didn't pay much attention 
to it, and he shouldn't have, because it turns out that effi
:iency is really not the primary problem of the animal's 
motion. We'll see that when we look at the energy re
~uirement. How much power does it take to run one of these 
things with a 1% efficient propulsion system, at this speed 
in these conditions? We can work it out very easily. Going 
30 J,Lm/sec, at 1 % efficiency will cost us about 2 X 10-8 

~rgs/sec at the motor. On a per weight basis, that's a 0.5 
W /kg, which is really not very much. Just moving things 
Hound in our transportation system, we use energy at 30 
)f 40 times that rate. This bug runs 24 h a day and only uses 
15 W /kg. That's a small fraction of its metabolism and its 
~nergy budget. Unlike us, they do not squander their energy 
budget just moving themselves around. So they don't care 
.vhether they have a 1% efficient flagellum or a 2% efficient 
nagellum. It doesn't really make that much difference. 
fhey're driving a Datsun in Saudi Arabia. 

So the interesting question is not how they swim. Turn 
wything-if it isn't perfectly symmetrical, you'll swim. If 
~he efficiency is only 1%, who cares. A better way to say it 
s that the bug can collect, by diffusion through the sur
·ounding medium, enough energetic molecules to keep 
moving when the concentration of those molecules is 10-9 

~. I've now introduced the word diffusion. Diffusion is 
mportant because of another very peculiar feature of the 
.vorld at low Reynolds number, and that is, stirring isn't any 
~ood. The bug's problem is not its energy supply; its problem 
s its environment. At low Reynolds number you can't shake 
)ff your environment. If you move, you take it along; it only 
~radually falls behind. We can use elementary physics to 
look at this in a very simple way. The time for transporting 
lnything a distance [ by stirring, is about [divided by the 
;tirring speed v. Whereas, for transport by diffusion, it's [2 

jivided by D, the diffusion constant. The ratio of those two 
:imes is a measure of the effectiveness of stirring versus that 
)f diffusion for any given distance and diffusion constant. 

Am. J. Phys., Vol. 45, No.1, January 1977 

I'm sure this ratio has someone's name but I don't know the 
literature and I don't know whose number that's called. Call 
it S for stirring number. 8 It's just lv/D. You'll notice by the 
way that the Reynolds number was Iv / v. v is the kinematic 
viscosity in cm2 / sec, and D is the diffusion constant in 
cm2/sec, for whatever it is that we are interested in fol
lowing-let us say a nutrient molecule in water. Now, in 
water the diffusion constant is pretty much the same for 
every reasonably sized molecule, something like 10-5 

cm2/sec. In the size domain that we're interested in, of 
micron distances, we find that the stirring number Sis 10-2, 

for the velocities that we are talking about (Fig. 18). In 
other words, this bug can't do anything by stirring its local 
surroundings. It might as well wait for things to diffuse, 
either in or out. The transport of wastes away from the 
animal and food to the animal is entirely controlled locally 
by diffusion. You can thrash around a lot, but the fellow 
who just sits there quietly waiting for stuff to diffuse will 
collect just as much. 

At one time I thought that the reason the thing swims is 
that if it swims it can get more stuff, because the medium 
is full of molecules the bug would like to have. All my in
stincts as a physicist say you should move if you want to 
scoop that stuff up. You can easily solve the problem of 
diffusion in the velocity field represented by the Stokes flow 
around a sphere-for instance, by a relaxation method. I 
did so and found out how fast the cell would have to go to 
increase its food supply. The food supply if it just sits there 
is 47raND molecules/sec, where a is the cell's radius (Fig. 
19) and N is the concentration of nutrient molecules. To 
increase its food supply by 10% it would have to move at a 
speed of 700 J,Lm/sec, which is 20 times as fast as it can 
swim. The increased intake varies like the square root of the 
bug's velocity so the swimming does no good at all in that 
respect. But what it can do is find places where the food is 
better or more abundant. That is, it does not move like a cow 

Sf/rrif'13 vr. 
""---....---... 
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Figure 18. 
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that is grazing a pasture-it moves to find greener pastures. 
And how far does it have to move? Well, it has to move far 
enough to outrun diffusion. We said before that stirring 
wouldn't do any good locally, compared to diffusion. But 
suppose it wants to run over there to see whether there is 
more over there. Then it must outrun diffusion, and how do 
you do that? Well, you go that magic distance, Dlv. So the 
rule is then, to outswim diffusion you have to go a distance 
which is equal to or greater than this number we had in our 
S constant. For typical D and v, you have to go about 30 p,m 
and that's just about what the swimming bacteria were 
doing. If you don't swim that far, you haven't gone any
where, because it's only on that scale that you could find a 

, ........ 
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Figure 20. 
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difference in your environment with respect to molecules 
of diffusion constant D (Fig. 20). 

Let's go back and look at one of those sections from 
Berg's track (Fig. 11). You'll see that there are some little 
trips, but otherwise you might ask why did it go clear over 
here and stop. Why did it go back? Well, my suggestion is, 
and I'd like to put this forward very tentatively, that the 
reason it does is because it's trying to outrun diffusion . 
Otherwise, it might as well sit still, as indeed do the mutants 
who don't have flagella. Now there is still another thing that 
I put forward with even more hesitation because I haven't 
tried this out on Howard yet. When he did his chemotaxis 
experiments, he found a very interesting behavior. If these 
things are put in a medium where there is a gradient of 
something that they like, they gradually work their way 
upstream. But if you look at how they do it and ask what 
rules they are using, what the algorithm is to use the current 
language, for finding your way upstream, it turns out that 
it's very simple. The algorithm is: if things are getting better, 
don't stop so soon. If, in other words, you plot, as Berg has 
done in some of his papers, the distribution of path lengths 
between runs and the little stops that he calls "twiddles," 
the distribution of path lengths if they are going up the 
gradient gets longer. That's a very simple rule for working 
your way to where things are better. If they're going down 
the gradient, though, they don't get shorter. And that seems 
a little puzzling. Why, if things are getting worse, don't they 
change sooner? My suggestion is that there is no point in 
stopping sooner. There is a sort of bedrock length which 
outruns diffusion and is useful for sampling the medium. 
Shorter paths would be a ridiculous way to sample. It may 
be something like that, but as I say, I don't know. The res
idue of education that I got -from this is partly this stuff 
about si'mple fluid mechanics, partly the realization that 
the mechanism of propulsion is really not very important 
except, of course, for the physiology of that very myserious 
motor, which physicists aren't competent even to conjecture 
about. 

I come back for a moment to Osborne Reynolds. That 
was a very great man. He was a professor of engineering, 
actually. He was the one who not only invented Reynolds 
number, but he was also the one who showed what turbu
lence amounts to and that there is instability in flow, and 
all that. He is also the one who solved the problem of how 
you lubricate a bearing, which is a very subtle problem that 
I recommend to anyone who hasn't looked into it. But I 
discovered just recently in reading in his collected works 
that toward the end of his life, in 1903, he published a very 
long paper on the details of the submechanical universe, and 
he had a complete theory which involved small particles of 
diameter 10- 18 cm. It gets very nutty from there on. It's a 
mechanical model, the particles interact with one another 
and fill all space. But I thought that, incongruous as it may 
have seemed to put this kind of stuff in between our studies 
of the submechanical universe today, I believe that Osborne 
Reynolds would not have found that incongruous, and I'm 
quite positive that Viki doesn't. 

I (J 976 footnote) As no one will be surprised to hear, Professor Weisskopf 
has recently shown me how this can be explained. I hope he will com
municate it to AJP readers. 

2( 1976 footnote) In that world, Aristotle's mechanics is correct! See A. 
Franklin, Am. J. Phys. 44, 527-528 (J 976). 
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TEACHING 

So how do you go about teaching them something new? By mixing what they know 
with what they don't know. Then, when they see vaguely in their fog/something they 
recognize, they think, "Ah, I know that." And then it's just one more step to, "Ah, I 
know the whole thing." And their mind thrusts forward into the unknown and they 
begin to recognize what they didn't know before and they increase their powers of 
understanding. 

-Picasso, in Life with Picasso by Francoise Gilot and Carlton Lake (Nelson, London, 
1965), p. 66. 
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