Cancer Holography for Personalized Medicine

Imagine if you could use the physics of coherent light to record a 3D hologram of a cancer tumor and use it to select the best therapy for the cancer patient.

This week in Scientific Reports, a Nature Research publication, we demonstrate the first step towards that goal.

In a collaboration between Purdue University and the Northwestern University School of Medicine, we performed Doppler spectroscopy of intracellular dynamics of human epithelial ovarian cancer tumor biopsies and observed how they responded to selected anti-cancer drugs. Distinctly different Doppler spectra were observed for patients who went into remission versus those who failed to achieve cancer remission. This is the first clinical pilot trial of the technology, known as Biodynamic Imaging (BDI), published in human cancer research.

BDI may, in the future, make it possible to select the most effective therapies for individual cancer patients, realizing the long-sought dream of personalized cancer care.

Read it here: This latest research on personalized medicine has just been published with @SpringerNature in @ScientificReports.

The Purdue University Office of Technology Transfer has licensed the BDI patent portfolio to Animated Dynamics, Inc., located in Indianapolis, IN, that is working to commercialize the technology to translate it to the cancer clinic. Currently less than 40% of all cancer patients respond favorably to their chemotherapy. Using BDI technology our hope is to improve rates of remission in select cancer settings.

This work was supported by the NIH under the The Office of Physical Sciences – Oncology (OPSO) and by NSF CBET.