Wave-Particle Duality and Hamilton’s Physics

Wave-particle duality was one of the greatest early challenges to quantum physics, partially clarified by Bohr’s Principle of Complementarity, but never easily grasped even today.  Yet long before Einstein proposed the indivisible quantum  of light (later to be called the photon by the chemist Gilbert Lewis), wave-particle duality was firmly embedded in the foundations of the classical physics of mechanics.

Light led the way to mechanics more than once in the history of physics.

 

Willebrord Snel van Royen

The Dutch physicist Willebrord Snel van Royen in 1621 derived an accurate mathematical description of the refraction of beams of light at a material interface in terms of sine functions, but he did not publish.  Fifteen years later, as Descartes was looking for an example to illustrate his new method of analytic geometry, he discovered the same law, unaware of Snel’s prior work.  In France the law is known as the Law of Descartes.  In the Netherlands (and much of the rest of the world) it is known as Snell’s Law.  Both Snell and Descartes based their work on Newton’s corpuscles of light.  The brilliant Fermat adopted corpuscles when he developed his principle of least time to explain the law of Descartes in 1662.  Yet Fermat was forced to assume that the corpuscles traveled slower in the denser material even though it was generally accepted that light should travel faster in denser media, just as sound did.  Seventy-five years later, Maupertuis continued the tradition when he developed his principle of least action and applied it to light corpuscles traveling faster through denser media, just as Descartes had prescribed.

HuygensParticle-02

The wave view of Snell’s Law (on the left). The source resides in the medium with higher speed. As the wave fronts impinge on the interface to a medium with lower speed, the wave fronts in the slower medium flatten out, causing the ray perpendicular to the wave fronts to tilt downwards. The particle view of Snell’s Law (on the right). The momentum of the particle in the second medium is larger than in the first, but the transverse components of the momentum (the x-components) are conserved, causing a tilt downwards of the particle’s direction as it crosses the interface. [i]

Maupertuis’ paper applying the principle of least action to the law of Descartes was a critical juncture in the development of dynamics.  His assumption of faster speeds in denser material was wrong, but he got the right answer because of the way he defined action for light.  Encouraged by the success of his (incorrect) theory, Maupertuis extended the principle of least action to mechanical systems, and this time used the right theory to get the right answers.  Despite Maupertuis’ misguided aspirations to become a physicist of equal stature to Newton, he was no mathematician, and he welcomed (and  somewhat appropriated) the contributions of Leonid Euler on the topic, who established the mathematical foundations for the principle of least action.  This work, in turn, attracted the attention of the Italian mathematician Lagrange, who developed a general new approach (Lagrangian mechanics) to mechanical systems that included the principle of least action as a direct consequence of his equations of motion.  This was the first time that light led the way to classical mechanics.  A hundred years after Maupertuis, it was time again for light to lead to the way to a deeper mechanics known as Hamiltonian mechanics.

Young Hamilton

William Rowland Hamilton (1805—1865) was a prodigy as a boy who knew parts of thirteen languages by the time he was thirteen years old. These were Greek, Latin, Hebrew, Syriac, Persian, Arabic, Sanskrit, Hindoostanee, Malay, French, Italian, Spanish, and German. In 1823 he entered Trinity College of Dublin University to study science. In his second and third years, he won the University’s top prizes for Greek and for mathematical physics, a run which may have extended to his fourth year—but he was offered the position of Andrew’s Professor of Astronomy at Dublin and Royal Astronomer of Ireland—not to be turned down at the early age of 21.

Hamilton1

Title of Hamilton’s first paper on his characteristic function as a new method that applied his theory from optics to the theory of mechanics, including Lagrangian mechanics as a special case.

His research into mathematical physics  concentrated on the theory of rays of light. Augustin-Jean Fresnel (1788—1827) had recently passed away, leaving behind a wave theory of light that provided a starting point for many effects in optical science, but which lacked broader generality. Hamilton developed a rigorous mathematical framework that could be applied to optical phenomena of the most general nature. This led to his theory of the Characteristic Function, based on principles of the variational calculus of Euler and Lagrange, that predicted the refraction of rays of light, like trajectories, as they passed through different media or across boundaries. In 1832 Hamilton predicted a phenomenon called conical refraction, which would cause a single ray of light entering a biaxial crystal to refract into a luminous cone.

Mathematical physics of that day typically followed experimental science. There were so many observed phenomena in so many fields that demanded explanation, that the general task of the mathematical physicist was to explain phenomena using basic principles followed by mathematical analysis. It was rare for the process to work the other way, for a theorist to predict a phenomenon never before observed. Today we take this as very normal. Einstein’s fame was primed by his prediction of the bending of light by gravity—but only after the observation of the effect by Eddington four years later was Einstein thrust onto the world stage. The same thing happened to Hamilton when his friend Humphrey Lloyd observed conical refraction, just as Hamilton had predicted. After that, Hamilton was revered as one of the most ingenious scientists of his day.

Following the success of conical refraction, Hamilton turned from optics to pursue a striking correspondence he had noted in his Characteristic Function that applied to mechanical trajectories as well as it did to rays of light. In 1834 and 1835 he published two papers On a General Method in Mechanics( I and II)[ii], in which he reworked the theory of Lagrange by beginning with the principle of varying action, which is now known as Hamilton’s Principle. Hamilton’s principle is related to Maupertuis’ principle of least action, but it was more rigorous and a more general approach to derive the Euler-Lagrange equations.  Hamilton’s Principal Function allowed the trajectories of particles to be calculated in complicated situations that were challenging for a direct solution by Lagrange’s equations.

The importance that these two papers had on the future development of physics would not be clear until 1842 when Carl Gustav Jacob Jacobi helped to interpret them and augment them, turning them into a methodology for solving dynamical problems. Today, the Hamiltonian approach to dynamics is central to all of physics, and thousands of physicists around the world mention his name every day, possibly more often than they mention Einstein’s.

[i] Reprinted from D. D. Nolte, Galileo Unbound: A Path Across Life, the Universe and Everything (Oxford, 2018)

[ii] W. R. Hamilton, “On a general method in dynamics I,” Phil. Trans. Roy. Soc., pp. 247-308, 1834; W. R. Hamilton, “On a general method in dynamics II,” Phil. Trans. Roy. Soc., pp. 95-144, 1835.

Huygens’ Tautochrone

In February of 1662, Pierre de Fermat wrote a paper Synthesis ad refractiones that explained Descartes-Snell’s Law of light refraction by finding the least time it took for light to travel between two points. This famous approach is now known as Fermat’s principle, and it motivated other searches for minimum principles. A few years earlier, in 1656, Christiaan Huygens had invented the pendulum clock [1], and he began a ten-year study of the physics of the pendulum. He was well aware that the pendulum clock does not keep exact time—as the pendulum swings wider, the period of oscillation slows down. He began to search for a path of the pendular mass that would keep the period the same (and make pendulum clocks more accurate), and he discovered a trajectory along which a mass would arrive at the same position in the same time no matter where it was released on the curve. That such a curve could exist was truly remarkable, and it promised to make highly accurate time pieces.

It made minimization problems a familiar part of physics—they became part of the mindset, leading ultimately to the principle of least action.

This curve is known as a tautochrone (literally: same or equal time) and Huygens provided a geometric proof in his Horologium Oscillatorium sive de motu pendulorum (1673) that the curve was a cycloid. A cycloid is the curve traced by a point on the rim of a circular wheel as the wheel rolls without slipping along a straight line. Huygens invented such a pendulum in which the mass executed a cycloid curve. It was a mass on a flexible yet inelastic string that partially wrapped itself around a solid bumper on each half swing. In principle, whether the pendulum swung gently, or through large displacements, the time would be the same. Unfortunately, friction along the contact of the string with the bumper prevented the pendulum from achieving this goal, and the tautochronic pendulum did not catch on.

HuygensIsochron

Fig. 1 Huygens’ isochronous pendulum.  The time it takes the pendulum bob to follow the cycloid arc is independent of the pendulum’s amplitude, unlike for the circular arc, as the pendulum slows down for larger excursions.

The solution of the tautochrone curve of equal time led naturally to a search for the curve of least time, known as the brachistochrone curve for a particle subject to gravity, like a bead sliding on a frictionless wire between two points. Johann Bernoulli published a challenge to find the brachistochrone in 1696 in the scientific journal Acta Eruditorum that had been founded in 1682 by Leibniz in Germany in collaboration with Otto Mencke. Leibniz envisioned the journal to be a place where new ideas in the natural sciences and mathematics could be published and disseminated rapidly, and it included letters and commentaries, acting as a communication hub to help establish a community of scholars across Europe. In reality, it was the continental response to the Proceedings of the Royal Society in England.  Naturally, the Acta and the Proceedings would later take partisan sides in the priority dispute between Leibniz and Newton for the development of the calculus.

When Bernoulli published his brachistochrone challenge in the June issue of 1696, it was read immediately by the leading mathematicians of the day, many of whom took up the challenge and replied. The problem was solved and published in the May 1697 issue of the Acta by no less than five correspondents, including Johann Bernoulli, Jakob Bernoulli (Johann’s brother), Isaac Newton, Gottfried Leibniz and Ehrenfried Walther von Tschirnhaus. Each of them varied in their approaches, but all found the same solution. Johann and Jakob each considered the problem as the path of a light beam in a medium whose speed varied with depth. Just as in the tautochrone, the solved curve was a cycloid. The path of fastest time always started with a vertical path that allowed the fastest acceleration, and the point of greatest depth always was at the point of greatest horizontal speed.

The brachistrochrone problem led to the invention of the variational calculus, with first steps by Jakob Bernoulli and later more rigorous approaches by Euler.  However, its real importance is that it made minimization problems a familiar part of physics—they became part of the mindset, leading ultimately to the principle of least action.

[1] Galileo conceived of a pendulum clock in 1641, and his son Vincenzo started construction, but it was never finished.  Huygens submitted and received a patent in 1657 for a practical escape mechanism on pendulum clocks that is still used today.