# A Short History of Hyperspace

Hyperspace by any other name would sound as sweet, conjuring to the mind’s eye images of hypercubes and tesseracts, manifolds and wormholes, Klein bottles and Calabi Yau quintics.  Forget the dimension of time—that may be the most mysterious of all—but consider the extra spatial dimensions that challenge the mind and open the door to dreams of going beyond the bounds of today’s physics.

The geometry of n dimensions studies reality; no one doubts that. Bodies in hyperspace are subject to precise definition, just like bodies in ordinary space; and while we cannot draw pictures of them, we can imagine and study them.

(Poincare 1895)

Here is a short history of hyperspace.  It begins with advances by Möbius and Liouville and Jacobi who never truly realized what they had invented, until Cayley and Grassmann and Riemann made it explicit.  They opened Pandora’s box, and multiple dimensions burst upon the world never to be put back again, giving us today the manifolds of string theory and infinite-dimensional Hilbert spaces.

## August Möbius (1827)

Although he is most famous for the single-surface strip that bears his name, one of the early contributions of August Möbius was the idea of barycentric coordinates [1] , for instance using three coordinates to express the locations of points in a two-dimensional simplex—the triangle. Barycentric coordinates are used routinely today in metallurgy to describe the alloy composition in ternary alloys.

Möbius’ work was one of the first to hint that tuples of numbers could stand in for higher dimensional space, and they were an early example of homogeneous coordinates that could be used for higher-dimensional representations. However, he was too early to use any language of multidimensional geometry.

## Carl Jacobi (1834)

Carl Jacobi was a master at manipulating multiple variables, leading to his development of the theory of matrices. In this context, he came to study (n-1)-fold integrals over multiple continuous-valued variables. From our modern viewpoint, he was evaluating surface integrals of hyperspheres.

In 1834, Jacobi found explicit solutions to these integrals and published them in a paper with the imposing title “De binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones lineares in alias binas transformandis, quae solis quadratis variabilium constant; una cum variis theorematis de transformatione et determinatione integralium multiplicium” [2]. The resulting (n-1)-fold integrals are

when the space dimension is even or odd, respectively. These are the surface areas of the manifolds called (n-1)-spheres in n-dimensional space. For instance, the 2-sphere is the ordinary surface 4πr2 of a sphere on our 3D space.

Despite the fact that we recognize these as surface areas of hyperspheres, Jacobi used no geometric language in his paper. He was still too early, and mathematicians had not yet woken up to the analogy of extending spatial dimensions beyond 3D.

## Joseph Liouville (1838)

Joseph Liouville’s name is attached to a theorem that lies at the core of mechanical systems—Liouville’s Theorem that proves that volumes in high-dimensional phase space are incompressible. Surprisingly, Liouville had no conception of high dimensional space, to say nothing of abstract phase space. The story of the convoluted path that led Liouville’s name to be attached to his theorem is told in Chapter 6, “The Tangled Tale of Phase Space”, in Galileo Unbound (Oxford University Press, 2018).

Nonetheless, Liouville did publish a pure-mathematics paper in 1838 in Crelle’s Journal [3] that identified an invariant quantity that stayed constant during the differential change of multiple variables when certain criteria were satisfied. It was only later that Jacobi, as he was developing a new mechanical theory based on William R. Hamilton’s work, realized that the criteria needed for Liouville’s invariant quantity to hold were satisfied by conservative mechanical systems. Even then, neither Liouville nor Jacobi used the language of multidimensional geometry, but that was about to change in a quick succession of papers and books by three mathematicians who, unknown to each other, were all thinking along the same lines.

## Arthur Cayley (1843)

Arthur Cayley was the first to take the bold step to call the emerging geometry of multiple variables to be actual space. His seminal paper “Chapters in the Analytic Theory of n-Dimensions” was published in 1843 in the Philosophical Magazine [4]. Here, for the first time, Cayley recognized that the domain of multiple variables behaved identically to multidimensional space. He used little of the language of geometry in the paper, which was mostly analysis rather than geometry, but his bold declaration for spaces of n-dimensions opened the door to a changing mindset that would soon sweep through geometric reasoning.

## Hermann Grassmann (1844)

Grassmann’s life story, although not overly tragic, was beset by lifelong setbacks and frustrations. He was a mathematician literally 30 years ahead of his time, but because he was merely a high-school teacher, no-one took his ideas seriously.

Somehow, in nearly a complete vacuum, disconnected from the professional mathematicians of his day, he devised an entirely new type of algebra that allowed geometric objects to have orientation. These could be combined in numerous different ways obeying numerous different laws. The simplest elements were just numbers, but these could be extended to arbitrary complexity with arbitrary number of elements. He called his theory a theory of “Extension”, and he self-published a thick and difficult tome that contained all of his ideas [5]. He tried to enlist Möbius to help disseminate his ideas, but even Möbius could not recognize what Grassmann had achieved.

In fact, what Grassmann did achieve was vector algebra of arbitrarily high dimension. Perhaps more impressive for the time is that he actually recognized what he was dealing with. He did not know of Cayley’s work, but independently of Cayley he used geometric language for the first time describing geometric objects in high dimensional spaces. He said, “since this method of formation is theoretically applicable without restriction, I can define systems of arbitrarily high level by this method… geometry goes no further, but abstract science knows no limits.” [6]

Grassman was convinced that he had discovered something astonishing and new, which he had, but no one understood him. After years trying to get mathematicians to listen, he finally gave up, left mathematics behind, and actually achieved some fame within his lifetime in the field of linguistics. There is even a law of diachronic linguistics named after him. For the story of Grassmann’s struggles, see the blog on Grassmann and his Wedge Product .

## Julius Plücker (1846)

Projective geometry sounds like it ought to be a simple topic, like the projective property of perspective art as parallel lines draw together and touch at the vanishing point on the horizon of a painting. But it is far more complex than that, and it provided a separate gateway into the geometry of high dimensions.

A hint of its power comes from homogeneous coordinates of the plane. These are used to find where a point in three dimensions intersects a plane (like the plane of an artist’s canvas). Although the point on the plane is in two dimensions, it take three homogeneous coordinates to locate it. By extension, if a point is located in three dimensions, then it has four homogeneous coordinates, as if the three dimensional point were a projection onto 3D from a 4D space.

These ideas were pursued by Julius Plücker as he extended projective geometry from the work of earlier mathematicians such as Desargues and Möbius. For instance, the barycentric coordinates of Möbius are a form of homogeneous coordinates. What Plücker discovered is that space does not need to be defined by a dense set of points, but a dense set of lines can be used just as well. The set of lines is represented as a four-dimensional manifold. Plücker reported his findings in a book in 1846 [7] and expanded on the concepts of multidimensional spaces published in 1868 [8].

## Ludwig Schläfli (1851)

After Plücker, ideas of multidimensional analysis became more common, and Ludwig Schläfli (1814 – 1895), a professor at the University of Berne in Switzerland, was one of the first to fully explore analytic geometry in higher dimensions. He described multidimsnional points that were located on hyperplanes, and he calculated the angles between intersecting hyperplanes [9]. He also investigated high-dimensional polytopes, from which are derived our modern “Schläfli notation“. However, Schläffli used his own terminology for these objects, emphasizing analytic properties without using the ordinary language of high-dimensional geometry.

## Bernhard Riemann (1854)

The person most responsible for the shift in the mindset that finally accepted the geometry of high-dimensional spaces was Bernhard Riemann. In 1854 at the university in Göttingen he presented his habilitation talk “Über die Hypothesen, welche der Geometrie zu Grunde liegen” (Over the hypotheses on which geometry is founded). A habilitation in Germany was an examination that qualified an academic to be able to advise their own students (somewhat like attaining tenure in US universities).

The habilitation candidate would suggest three topics, and it was usual for the first or second to be picked. Riemann’s three topics were: trigonometric properties of functions (he was the first to rigorously prove the convergence properties of Fourier series), aspects of electromagnetic theory, and a throw-away topic that he added at the last minute on the foundations of geometry (on which he had not actually done any serious work). Gauss was his faculty advisor and picked the third topic. Riemann had to develop the topic in a very short time period, starting from scratch. The effort exhausted him mentally and emotionally, and he had to withdraw temporarily from the university to regain his strength. After returning around Easter, he worked furiously for seven weeks to develop a first draft and then asked Gauss to set the examination date. Gauss initially thought to postpone to the Fall semester, but then at the last minute scheduled the talk for the next day. (For the story of Riemann and Gauss, see Chapter 4 “Geometry on my Mind” in the book Galileo Unbound (Oxford, 2018)).

Riemann gave his lecture on 10 June 1854, and it was a masterpiece. He stripped away all the old notions of space and dimensions and imbued geometry with a metric structure that was fundamentally attached to coordinate transformations. He also showed how any set of coordinates could describe space of any dimension, and he generalized ideas of space to include virtually any ordered set of measurables, whether it was of temperature or color or sound or anything else. Most importantly, his new system made explicit what those before him had alluded to: Jacobi, Grassmann, Plücker and Schläfli. Ideas of Riemannian geometry began to percolate through the mathematics world, expanding into common use after Richard Dedekind edited and published Riemann’s habilitation lecture in 1868 [10].

## George Cantor and Dimension Theory (1878)

In discussions of multidimensional spaces, it is important to step back and ask what is dimension? This question is not as easy to answer as it may seem. In fact, in 1878, George Cantor proved that there is a one-to-one mapping of the plane to the line, making it seem that lines and planes are somehow the same. He was so astonished at his own results that he wrote in a letter to his friend Richard Dedekind “I see it, but I don’t believe it!”. A few decades later, Peano and Hilbert showed how to create area-filling curves so that a single continuous curve can approach any point in the plane arbitrarily closely, again casting shadows of doubt on the robustness of dimension. These questions of dimensionality would not be put to rest until the work by Karl Menger around 1926 when he provided a rigorous definition of topological dimension (see the Blog on the History of Fractals).

## Hermann Minkowski and Spacetime (1908)

Most of the earlier work on multidimensional spaces were mathematical and geometric rather than physical. One of the first examples of physical hyperspace is the spacetime of Hermann Minkowski. Although Einstein and Poincaré had noted how space and time were coupled by the Lorentz equations, they did not take the bold step of recognizing space and time as parts of a single manifold. This step was taken in 1908 [11] by Hermann Minkowski who claimed

“Gentlemen! The views of space and time which I wish to lay before you … They are radical. Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.”Herman Minkowski (1908)

For the story of Einstein and Minkowski, see the Blog on Minkowski’s Spacetime: The Theory that Einstein Overlooked.

## Felix Hausdorff and Fractals (1918)

No story of multiple “integer” dimensions can be complete without mentioning the existence of “fractional” dimensions, also known as fractals. The individual who is most responsible for the concepts and mathematics of fractional dimensions was Felix Hausdorff. Before being compelled to commit suicide by being jewish in Nazi Germany, he was a leading light in the intellectual life of Leipzig, Germany. By day he was a brilliant mathematician, by night he was the author Paul Mongré writing poetry and plays.

In 1918, as the war was ending, he wrote a small book “Dimension and Outer Measure” that established ways to construct sets whose measured dimensions were fractions rather than integers [12]. Benoit Mandelbrot would later popularize these sets as “fractals” in the 1980’s. For the background on a history of fractals, see the Blog A Short History of Fractals.

## The Fifth Dimension of Theodore Kaluza (1921) and Oskar Klein (1926)

The first theoretical steps to develop a theory of a physical hyperspace (in contrast to merely a geometric hyperspace) were taken by Theodore Kaluza at the University of Königsberg in Prussia. He added an additional spatial dimension to Minkowski spacetime as an attempt to unify the forces of gravity with the forces of electromagnetism. Kaluza’s paper was communicated to the journal of the Prussian Academy of Science in 1921 through Einstein who saw the unification principles as a parallel of some of his own attempts [13]. However, Kaluza’s theory was fully classical and did not include the new quantum theory that was developing at that time in the hands of Heisenberg, Bohr and Born.

Oskar Klein was a Swedish physicist who was in the “second wave” of quantum physicists having studied under Bohr. Unaware of Kaluza’s work, Klein developed a quantum theory of a five-dimensional spacetime [14]. For the theory to be self-consistent, it was necessary to roll up the extra dimension into a tight cylinder. This is like a strand a spaghetti—looking at it from far away it looks like a one-dimensional string, but an ant crawling on the spaghetti can move in two dimensions—along the long direction, or looping around it in the short direction called a compact dimension. Klein’s theory was an early attempt at what would later be called string theory. For the historical background on Kaluza and Klein, see the Blog on Oskar Klein.

## John Campbell (1931): Hyperspace in Science Fiction

Art has a long history of shadowing the sciences, and the math and science of hyperspace was no exception. One of the first mentions of hyperspace in science fiction was in the story “Islands in Space’, by John Campbell [15], published in the Amazing Stories quarterly in 1931, where it was used as an extraordinary means of space travel.

In 1951, Isaac Asimov made travel through hyperspace the transportation network that connected the galaxy in his Foundation Trilogy [16].

## John von Neumann and Hilbert Space (1932)

Quantum mechanics had developed rapidly through the 1920’s, but by the early 1930’s it was in need of an overhaul, having outstripped rigorous mathematical underpinnings. These underpinnings were provided by John von Neumann in his 1932 book on quantum theory [17]. This is the book that cemented the Copenhagen interpretation of quantum mechanics, with projection measurements and wave function collapse, while also establishing the formalism of Hilbert space.

Hilbert space is an infinite dimensional vector space of orthogonal eigenfunctions into which any quantum wave function can be decomposed. The physicists of today work and sleep in Hilbert space as their natural environment, often losing sight of its infinite dimensions that don’t seem to bother anyone. Hilbert space is more than a mere geometrical space, but less than a full physical space (like five-dimensional spacetime). Few realize that what is so often ascribed to Hilbert was actually formalized by von Neumann, among his many other accomplishments like stored-program computers and game theory.

## Einstein-Rosen Bridge (1935)

One of the strangest entities inhabiting the theory of spacetime is the Einstein-Rosen Bridge. It is space folded back on itself in a way that punches a short-cut through spacetime. Einstein, working with his collaborator Nathan Rosen at Princeton’s Institute for Advanced Study, published a paper in 1935 that attempted to solve two problems [18]. The first problem was the Schwarzschild singularity at a radius r = 2M/c2 known as the Schwarzschild radius or the Event Horizon. Einstein had a distaste for such singularities in physical theory and viewed them as a problem. The second problem was how to apply the theory of general relativity (GR) to point masses like an electron. Again, the GR solution to an electron blows up at the location of the particle at r = 0.

To eliminate both problems, Einstein and Rosen (ER) began with the Schwarzschild metric in its usual form

where it is easy to see that it “blows up” when r = 2M/c2 as well as at r = 0. ER realized that they could write a new form that bypasses the singularities using the simple coordinate substitution

to yield the “wormhole” metric

It is easy to see that as the new variable u goes from -inf to +inf that this expression never blows up. The reason is simple—it removes the 1/r singularity by replacing it with 1/(r + ε). Such tricks are used routinely today in computational physics to keep computer calculations from getting too large—avoiding the divide-by-zero problem. It is also known as a form of regularization in machine learning applications. But in the hands of Einstein, this simple “bypass” is not just math, it can provide a physical solution.

It is hard to imagine that an article published in the Physical Review, especially one written about a simple variable substitution, would appear on the front page of the New York Times, even appearing “above the fold”, but such was Einstein’s fame this is exactly the response when he and Rosen published their paper. The reason for the interest was because of the interpretation of the new equation—when visualized geometrically, it was like a funnel between two separated Minkowski spaces—in other words, what was named a “wormhole” by John Wheeler in 1957. Even back in 1935, there was some sense that this new property of space might allow untold possibilities, perhaps even a form of travel through such a short cut.

As it turns out, the ER wormhole is not stable—it collapses on itself in an incredibly short time so that not even photons can get through it in time. More recent work on wormholes have shown that it can be stabilized by negative energy density, but ordinary matter cannot have negative energy density. On the other hand, the Casimir effect might have a type of negative energy density, which raises some interesting questions about quantum mechanics and the ER bridge.

## Edward Witten’s 10+1 Dimensions (1995)

A history of hyperspace would not be complete without a mention of string theory and Edward Witten’s unification of the variously different 10-dimensional string theories into 10- or 11-dimensional M-theory. At a string theory conference at USC in 1995 he pointed out that the 5 different string theories of the day were all related through dualities. This observation launched the second superstring revolution that continues today. In this theory, 6 extra spatial dimensions are wrapped up into complex manifolds such as the Calabi-Yau manifold.

## Prospects

There is definitely something wrong with our three-plus-one dimensions of spacetime. We claim that we have achieved the pinnacle of fundamental physics with what is called the Standard Model and the Higgs boson, but dark energy and dark matter loom as giant white elephants in the room. They are giant, gaping, embarrassing and currently unsolved. By some estimates, the fraction of the energy density of the universe comprised of ordinary matter is only 5%. The other 95% is in some form unknown to physics. How can physicists claim to know anything if 95% of everything is in some unknown form?

The answer, perhaps to be uncovered sometime in this century, may be the role of extra dimensions in physical phenomena—probably not in every-day phenomena, and maybe not even in high-energy particles—but in the grand expanse of the cosmos.

By David D. Nolte, Feb. 8, 2023

## Bibliography:

M. Kaku, R. O’Keefe, Hyperspace: A scientific odyssey through parallel universes, time warps, and the tenth dimension.  (Oxford University Press, New York, 1994).

A. N. Kolmogorov, A. P. Yushkevich, Mathematics of the 19th century: Geometry, analytic function theory.  (Birkhäuser Verlag, Basel ; 1996).

## References:

[1] F. Möbius, in Möbius, F. Gesammelte Werke,, D. M. Saendig, Ed. (oHG, Wiesbaden, Germany, 1967), vol. 1, pp. 36-49.

[2] Carl Jacobi, “De binis quibuslibet functionibus homogeneis secundi ordinis per substitutiones lineares in alias binas transformandis, quae solis quadratis variabilium constant; una cum variis theorematis de transformatione et determinatione integralium multiplicium” (1834)

[3] J. Liouville, Note sur la théorie de la variation des constantes arbitraires. Liouville Journal 3, 342-349 (1838).

[4] A. Cayley, Chapters in the analytical geometry of n dimensions. Collected Mathematical Papers 1, 317-326, 119-127 (1843).

[5] H. Grassmann, Die lineale Ausdehnungslehre.  (Wiegand, Leipzig, 1844).

[6] H. Grassmann quoted in D. D. Nolte, Galileo Unbound (Oxford University Press, 2018) pg. 105

[7] J. Plücker, System der Geometrie des Raumes in Neuer Analytischer Behandlungsweise, Insbesondere de Flächen Sweiter Ordnung und Klasse Enthaltend.  (Düsseldorf, 1846).

[8] J. Plücker, On a New Geometry of Space (1868).

[9] L. Schläfli, J. H. Graf, Theorie der vielfachen Kontinuität. Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft für die Gesammten Naturwissenschaften 38. ([s.n.], Zürich, 1901).

[10] B. Riemann, Über die Hypothesen, welche der Geometrie zu Grunde liegen, Habilitationsvortrag. Göttinger Abhandlung 13,  (1854).

[11] Minkowski, H. (1909). “Raum und Zeit.” Jahresbericht der Deutschen Mathematikier-Vereinigung: 75-88.

[12] Hausdorff, F.(1919).“Dimension und ausseres Mass,”Mathematische Annalen, 79: 157–79.

[13] Kaluza, Theodor (1921). “Zum Unitätsproblem in der Physik”. Sitzungsber. Preuss. Akad. Wiss. Berlin. (Math. Phys.): 966–972

[14] Klein, O. (1926). “Quantentheorie und fünfdimensionale Relativitätstheorie“. Zeitschrift für Physik. 37 (12): 895

[15] John W. Campbell, Jr. “Islands of Space“, Amazing Stories Quarterly (1931)

[16] Isaac Asimov, Foundation (Gnome Press, 1951)

[17] J. von Neumann, Mathematical Foundations of Quantum Mechanics.  (Princeton University Press, ed. 1996, 1932).

[18] A. Einstein and N. Rosen, “The Particle Problem in the General Theory of Relativity,” Phys. Rev. 48(73) (1935).

# Paul Dirac’s Delta Function

Physical reality is nothing but a bunch of spikes and pulses—or glitches.  Take any smooth phenomenon, no matter how benign it might seem, and decompose it into an infinitely dense array of infinitesimally transient, infinitely high glitches.  Then the sum of all glitches, weighted appropriately, becomes the phenomenon.  This might be called the “glitch” function—but it is better known as Green’s function in honor of the ex-millwright George Green who taught himself mathematics at night to became one of England’s leading mathematicians of the age.

The δ function is thus merely a convenient notation … we perform operations on the abstract symbols, such as differentiation and integration …

PAM Dirac (1930)

The mathematics behind the “glitch” has a long history that began in the golden era of French analysis with the mathematicians Cauchy and Fourier, was employed by the electrical engineer Heaviside, and ultimately fell into the fertile hands of the quantum physicist, Paul Dirac, after whom it is named.

## Augustin-Louis Cauchy (1815)

The French mathematician and physicist Augustin-Louis Cauchy (1789 – 1857) has lent his name to a wide array of theorems, proofs and laws that are still in use today. In mathematics, he was one of the first to establish “modern” functional analysis and especially complex analysis. In physics he established a rigorous foundation for elasticity theory (including the elastic properties of the so-called luminiferous ether).

In the early days of the 1800’s Cauchy was exploring how integrals could be used to define properties of functions.  In modern terminology we would say that he was defining kernel integrals, where a function is integrated over a kernel to yield some property of the function.

In 1815 Cauchy read before the Academy of Paris a paper with the long title “Theory of wave propagation on a surface of a fluid of indefinite weight”.  The paper was not published until more than ten years later in 1827 by which time it had expanded to 300 pages and contained numerous footnotes.  The thirteenth such footnote was titled “On definite integrals and the principal values of indefinite integrals” and it contained one of the first examples of what would later become known as a generalized distribution.  The integral is a function F(μ) integrated over a kernel

Cauchy lets the scale parameter α be “an infinitely small number”.  The kernel is thus essentially zero for any values of μ “not too close to α”.  Today, we would call the kernel given by

in the limit that α vanishes, “the delta function”.

Cauchy’s approach to the delta function is today one of the most commonly used descriptions of what a delta function is.  It is not enough to simply say that a delta function is an infinitely narrow, infinitely high function whose integral is equal to unity.  It helps to illustrate the behavior of the Cauchy function as α gets progressively smaller, as shown in Fig. 1.

In the limit as α approaches zero, the function grows progressively higher and progressively narrower, but the integral over the function remains unity.

## Joseph Fourier (1822)

The delayed publication of Cauchy’s memoire kept it out of common knowledge, so it can be excused if Joseph Fourier (1768 – 1830) may not have known of it by the time he published his monumental work on heat in 1822.  Perhaps this is why Fourier’s approach to the delta function was also different than Cauchy’s.

Fourier noted that an integral over a sinusoidal function, as the argument of the sinusoidal function went to infinity, became independent of the limits of integration. He showed

when ε << 1/p as p went to infinity. In modern notation, this would be the delta function defined through the “sinc” function

and Fourier noted that integrating this form over another function f(x) yielded the value of the function f(α) evaluated at α, rediscovering the results of Cauchy, but using a sinc(x) function in Fig. 2 instead of the Cauchy function of Fig. 1.

## George Green’s Function (1829)

A history of the delta function cannot be complete without mention of George Green, one of the most remarkable British mathematicians of the 1800’s.  He was a miller’s son who had only one year of education and spent most of his early life tending to his father’s mill.  In his spare time, and to cut the tedium of his work, he read the most up-to-date work of the French mathematicians, reading the papers of Cauchy and Poisson and Fourier, whose work far surpassed the British work at that time.  Unbelievably, he mastered the material and developed new material of his own, that he eventually self published.  This is the mathematical work that introduced the potential function and introduced fundamental solutions to unit sources—what today would be called point charges or delta functions.  These fundamental solutions are equivalent to the modern Green’s function, although they were developed rigorously much later by Courant and Hilbert and by Kirchhoff.

The modern idea of a Green’s function is simply the system response to a unit impulse—like throwing a pebble into a pond to launch expanding ripples or striking a bell.  To obtain the solutions for a general impulse, one integrates over the fundamental solutions weighted by the strength of the impulse.  If the system response to a delta function impulse at x = a, that is, a delta function δ(x-a), is G(x-a), then the response of the system to a distributed force f(x) is given by

where G(x-a) is called the Green’s function.

## Oliver Heaviside (1893)

Oliver Heaviside (1850 – 1925) tended to follow his own path, independently of whatever the mathematicians were doing.  Heaviside took particularly pragmatic approaches based on physical phenomena and how they might behave in an experiment.  This is the context in which he introduced once again the delta function, unaware of the work of Cauchy or Fourier.

Heaviside was an engineer at heart who practiced his art by doing. He was not concerned with rigor, only with what works. This part of his personality may have been forged by his apprenticeship in telegraph technology helped by his uncle Charles Wheatstone (of the Wheatstone bridge). While still a young man, Heaviside tried to tackle Maxwell on his new treatise on electricity and magnetism, but he realized his mathematics were lacking, so he began a project of self education that took several years. The product of those years was his development of an idiosyncratic approach to electronics that may be best described as operator algebra. His algebra contained mis-behaved functions, such as the step function that was later named after him. It could also handle the derivative of the step function, which is yet another way of defining the delta function, though certainly not to the satisfaction of any rigorous mathematician—but it worked. The operator theory could even handle the derivative of the delta function.

Perhaps the most important influence by Heaviside was his connection of the delta function to Fourier integrals. He was one of the first to show that

which states that the Fourier transform of a delta function is a complex sinusoid, and the Fourier transform of a sinusoid is a delta function. Heaviside wrote several influential textbooks on his methods, and by the 1920’s these methods, including the Heaviside function and its derivative, had become standard parts of the engineer’s mathematical toolbox.

Given the work by Cauchy, Fourier, Green and Heaviside, what was left for Paul Dirac to do?

## Paul Dirac (1930)

Paul Dirac (1902 – 1984) was given the moniker “The Strangest Man” by Niels Bohr during his visit to Copenhagen shortly after he had received his PhD.  In part, this was because of Dirac’s internal intensity that could make him seem disconnected from those around him. When he was working on a problem in his head, it was not unusual for him to start walking, and by the time he he became aware of his surroundings again, he would have walked the length of the city of Copenhagen. And his solutions to problems were ingenious, breaking bold new ground where others, some of whom were geniuses themselves, were fumbling in the dark.

Among his many influential works—works that changed how physicists thought of and wrote about quantum systems—was his 1930 textbook on quantum mechanics. This was more than just a textbook, because it invented new methods by unifying the wave mechanics of Schrödinger with the matrix mechanics of Born and Heisenberg.

In particular, there had been a disconnect between bound electron states in a potential and free electron states scattering off of the potential. In the one case the states have a discrete spectrum, i.e. quantized, while in the other case the states have a continuous spectrum. There were standard quantum tools for decomposing discrete states by a projection onto eigenstates in Hilbert space, but an entirely different set of tools for handling the scattering states.

Yet Dirac saw a commonality between the two approaches. Specifically, eigenstate decomposition on the one hand used discrete sums of states, while scattering solutions on the other hand used integration over a continuum of states. In the first format, orthogonality was denoted by a Kronecker delta notation, but there was no equivalent in the continuum case—until Dirac introduced the delta function as a kernel in the integrand. In this way, the form of the equations with sums over states multiplied by Kronecker deltas took on the same form as integrals over states multiplied by the delta function.

In addition to introducing the delta function into the quantum formulas, Dirac also explored many of the properties and rules of the delta function. He was aware that the delta function was not a “proper” function, but by beginning with a simple integral property as a starting axiom, he could derive virtually all of the extended properties of the delta function, including properties of its derivatives.

Mathematicians, of course, were appalled and were quick to point out the insufficiency of the mathematical foundation for Dirac’s delta function, until the French mathematician Laurent Schwartz (1915 – 2002) developed the general theory of distributions in the 1940’s, which finally put the delta function in good standing.

Dirac’s introduction, development and use of the delta function was the first systematic definition of its properties. The earlier work by Cauchy, Fourier, Green and Heaviside had all touched upon the behavior of such “spiked” functions, but they had used it in passing. After Dirac, physicists embraced it as a powerful new tool in their toolbox, despite the lag in its formal acceptance by mathematicians, until the work of Schwartz redeemed it.

By David D. Nolte Feb. 17, 2022

## Bibliography

V. Balakrishnan, “All about the Dirac Delta function(?)”, Resonance, Aug., pg. 48 (2003)

M. G. Katz. “Who Invented Dirac’s Delta Function?”, Semantic Scholar (2010).

J. Lützen, The prehistory of the theory of distributions. Studies in the history of mathematics and physical sciences ; 7 (Springer-Verlag, New York, 1982).

# The Doppler Universe

If you are a fan of the Doppler effect, then time trials at the Indy 500 Speedway will floor you.  Even if you have experienced the fall in pitch of a passing train whistle while stopped in your car at a railroad crossing, or heard the falling whine of a jet passing overhead, I can guarantee that you have never heard anything like an Indy car passing you by at 225 miles an hour.

## Indy 500 Time Trials and the Doppler Effect

The Indy 500 time trials are the best way to experience the effect, rather than on race day when there is so much crowd noise and the overlapping sounds of all the cars.  During the week before the race, the cars go out on the track, one by one, in time trials to decide the starting order in the pack on race day.  Fans are allowed to wander around the entire complex, so you can get right up to the fence at track level on the straight-away.  The cars go by only thirty feet away, so they are coming almost straight at you as they approach and straight away from you as they leave.  The whine of the car as it approaches is 43% higher than when it is standing still, and it drops to 33% lower than the standing frequency—a ratio almost approaching a factor of two.  And they go past so fast, it is almost a step function, going from a steady high note to a steady low note in less than a second.  That is the Doppler effect!

But as obvious as the acoustic Doppler effect is to us today, it was far from obvious when it was proposed in 1842 by Christian Doppler at a time when trains, the fastest mode of transport at the time, ran at 20 miles per hour or less.  In fact, Doppler’s theory generated so much controversy that the Academy of Sciences of Vienna held a trial in 1853 to decide its merit—and Doppler lost!  For the surprising story of Doppler and the fate of his discovery, see my Physics Today article

From that fraught beginning, the effect has expanded in such importance, that today it is a daily part of our lives.  From Doppler weather radar, to speed traps on the highway, to ultrasound images of babies—Doppler is everywhere.

## Development of the Doppler-Fizeau Effect

When Doppler proposed the shift in color of the light from stars in 1842 [1], depending on their motion towards or away from us, he may have been inspired by his walk to work every morning, watching the ripples on the surface of the Vltava River in Prague as the water slipped by the bridge piers.  The drawings in his early papers look reminiscently like the patterns you see with compressed ripples on the upstream side of the pier and stretched out on the downstream side.  Taking this principle to the night sky, Doppler envisioned that binary stars, where one companion was blue and the other was red, was caused by their relative motion.  He could not have known at that time that typical binary star speeds were too small to cause this effect, but his principle was far more general, applying to all wave phenomena.

Six years later in 1848 [2], the French physicist Armand Hippolyte Fizeau, soon to be famous for making the first direct measurement of the speed of light, proposed the same principle, unaware of Doppler’s publications in German.  As Fizeau was preparing his famous measurement, he originally worked with a spinning mirror (he would ultimately use a toothed wheel instead) and was thinking about what effect the moving mirror might have on the reflected light.  He considered the effect of star motion on starlight, just as Doppler had, but realized that it was more likely that the speed of the star would affect the locations of the spectral lines rather than change the color.  This is in fact the correct argument, because a Doppler shift on the black-body spectrum of a white or yellow star shifts a bit of the infrared into the visible red portion, while shifting a bit of the ultraviolet out of the visible, so that the overall color of the star remains the same, but Fraunhofer lines would shift in the process.  Because of the independent development of the phenomenon by both Doppler and Fizeau, and because Fizeau was a bit clearer in the consequences, the effect is more accurately called the Doppler-Fizeau Effect, and in France sometimes only as the Fizeau Effect.  Here in the US, we tend to forget the contributions of Fizeau, and it is all Doppler.

## Doppler and Exoplanet Discovery

It is fitting that many of today’s applications of the Doppler effect are in astronomy. His original idea on binary star colors was wrong, but his idea that relative motion changes frequencies was right, and it has become one of the most powerful astrometric techniques in astronomy today. One of its important recent applications was in the discovery of extrasolar planets orbiting distant stars.

When a large planet like Jupiter orbits a star, the center of mass of the two-body system remains at a constant point, but the individual centers of mass of the planet and the star both orbit the common point. This makes it look like the star has a wobble, first moving towards our viewpoint on Earth, then moving away. Because of this relative motion of the star, the light can appear blueshifted caused by the Doppler effect, then redshifted with a set periodicity. This was observed by Queloz and Mayer in 1995 for the star 51 Pegasi, which represented the first detection of an exoplanet [3]. The duo won the Nobel Prize in 2019 for the discovery.

## Doppler and Vera Rubins’ Galaxy Velocity Curves

In the late 1960’s and early 1970’s Vera Rubin at the Carnegie Institution of Washington used newly developed spectrographs to use the Doppler effect to study the speeds of ionized hydrogen gas surrounding massive stars in individual galaxies [4]. From simple Newtonian dynamics it is well understood that the speed of stars as a function of distance from the galactic center should increase with increasing distance up to the average radius of the galaxy, and then should decrease at larger distances. This trend in speed as a function of radius is called a rotation curve. As Rubin constructed the rotation curves for many galaxies, the increase of speed with increasing radius at small radii emerged as a clear trend, but the stars farther out in the galaxies were all moving far too fast. In fact, they are moving so fast that they exceeded escape velocity and should have flown off into space long ago. This disturbing pattern was repeated consistently in one rotation curve after another for many galaxies.

A simple fix to the problem of the rotation curves is to assume that there is significant mass present in every galaxy that is not observable either as luminous matter or as interstellar dust. In other words, there is unobserved matter, dark matter, in all galaxies that keeps all their stars gravitationally bound. Estimates of the amount of dark matter needed to fix the velocity curves is about five times as much dark matter as observable matter. In short, 80% of the mass of a galaxy is not normal. It is neither a perturbation nor an artifact, but something fundamental and large. The discovery of the rotation curve anomaly by Rubin using the Doppler effect stands as one of the strongest evidence for the existence of dark matter.

There is so much dark matter in the Universe that it must have a major effect on the overall curvature of space-time according to Einstein’s field equations. One of the best probes of the large-scale structure of the Universe is the afterglow of the Big Bang, known as the cosmic microwave background (CMB).

## Doppler and the Big Bang

The Big Bang was astronomically hot, but as the Universe expanded it cooled. About 380,000 years after the Big Bang, the Universe cooled sufficiently that the electron-proton plasma that filled space at that time condensed into hydrogen. Plasma is charged and opaque to photons, while hydrogen is neutral and transparent. Therefore, when the hydrogen condensed, the thermal photons suddenly flew free and have continued unimpeded, continuing to cool. Today the thermal glow has reached about three degrees above absolute zero. Photons in thermal equilibrium with this low temperature have an average wavelength of a few millimeters corresponding to microwave frequencies, which is why the afterglow of the Big Bang got its name: the Cosmic Microwave Background (CMB).

Not surprisingly, the CMB has no preferred reference frame, because every point in space is expanding relative to every other point in space. In other words, space itself is expanding. Yet soon after the CMB was discovered by Arno Penzias and Robert Wilson (for which they were awarded the Nobel Prize in Physics in 1978), an anisotropy was discovered in the background that had a dipole symmetry caused by the Doppler effect as the Solar System moves at 368±2 km/sec relative to the rest frame of the CMB. Our direction is towards galactic longitude 263.85o and latitude 48.25o, or a bit southwest of Virgo. Interestingly, the local group of about 100 galaxies, of which the Milky Way and Andromeda are the largest members, is moving at 627±22 km/sec in the direction of galactic longitude 276o and latitude 30o. Therefore, it seems like we are a bit slack in our speed compared to the rest of the local group. This is in part because we are being pulled towards Andromeda in roughly the opposite direction, but also because of the speed of the solar system in our Galaxy.

Aside from the dipole anisotropy, the CMB is amazingly uniform when viewed from any direction in space, but not perfectly uniform. At the level of 0.005 percent, there are variations in the temperature depending on the location on the sky. These fluctuations in background temperature are called the CMB anisotropy, and they help interpret current models of the Universe. For instance, the average angular size of the fluctuations is related to the overall curvature of the Universe. This is because, in the early Universe, not all parts of it were in communication with each other. This set an original spatial size to thermal discrepancies. As the Universe continued to expand, the size of the regional variations expanded with it, and the sizes observed today would appear larger or smaller, depending on how the universe is curved. Therefore, to measure the energy density of the Universe, and hence to find its curvature, required measurements of the CMB temperature that were accurate to better than a part in 10,000.

Equivalently, parts of the early universe had greater mass density than others, causing the gravitational infall of matter towards these regions. Then, through the Doppler effect, light emitted (or scattered) by matter moving towards these regions contributes to the anisotropy. They contribute what are known as “Doppler peaks” in the spatial frequency spectrum of the CMB anisotropy.

The examples discussed in this blog (exoplanet discovery, galaxy rotation curves, and cosmic background) are just a small sampling of the many ways that the Doppler effect is used in Astronomy. But clearly, Doppler has played a key role in the long history of the universe.

By David D. Nolte, Jan. 23, 2022

## References:

[1] C. A. DOPPLER, “Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels (About the coloured light of the binary stars and some other stars of the heavens),” Proceedings of the Royal Bohemian Society of Sciences, vol. V, no. 2, pp. 465–482, (Reissued 1903) (1842)

[2] H. Fizeau, “Acoustique et optique,” presented at the Société Philomathique de Paris, Paris, 1848.

[3] M. Mayor and D. Queloz, “A JUPITER-MASS COMPANION TO A SOLAR-TYPE STAR,” Nature, vol. 378, no. 6555, pp. 355-359, Nov (1995)

[4] Rubin, Vera; Ford, Jr., W. Kent (1970). “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions”. The Astrophysical Journal. 159: 379

D. D. Nolte, “The Fall and Rise of the Doppler Effect,” Physics Today, vol. 73, no. 3, pp. 31-35, Mar (2020)

M. Tegmark, “Doppler peaks and all that: CMB anisotropies and what they can tell us,” in International School of Physics Enrico Fermi Course 132 on Dark Matter in the Universe, Varenna, Italy, Jul 25-Aug 04 1995, vol. 132, in Proceedings of the International School of Physics Enrico Fermi, 1996, pp. 379-416

# Random Walks with Paul Langevin: Stochastic Dynamics

One of the most important conclusions from chaos theory is that not all random-looking processes are actually random.  In deterministic chaos, structures such as strange attractors are not random at all but are fractal structures determined uniquely by the dynamics.  But sometimes, in nature, processes really are random, or at least have to be treated as such because of their complexity.  Brownian motion is a perfect example of this.  At the microscopic level, the jostling of the Brownian particle can be understood in terms of deterministic momentum transfers from liquid atoms to the particle.  But there are so many liquid particles that their individual influences cannot be directly predicted.  In this situation, it is more fruitful to view the atomic collisions as a stochastic process with well-defined physical parameters and then study the problem statistically. This is what Einstein did in his famous 1905 paper that explained the statistical physics of Brownian motion.

Then there is the middle ground between deterministic mechanics and stochastic mechanics, where complex dynamics gains a stochastic component. This is what Paul Langevin did in 1908 when he generalized Einstein.

## Paul Langevin

Paul Langevin (1872 – 1946) had the fortune to stand at the cross-roads of modern physics, making key contributions, while serving as a commentator expanding on the works of the giants like Einstein and Lorentz and Bohr.  He was educated at the École Normale Supérieure and at the Sorbonne with a year in Cambridge studying with J. J. Thompson.  At the Sorbonne he worked in the laboratory of Jean Perrin (1870 – 1942) who received the Nobel Prize in 1926 for the experimental work on Brownian motion that had set the stage for Einstein’s crucial analysis of the problem confirming the atomic nature of matter.

Langevin received his PhD in 1902 on the topic of x-ray ionization of gases and was appointed as a lecturer at the College de France to substitute in for Éleuthère Mascart (who was an influential French physicist in optics).  In 1905 Langevin published several papers that delved into the problems of Lorentz contraction, coming very close to expressing the principles of relativity.  This work later led Einstein to say that, had he delayed publishing his own 1905 paper on the principles of relativity, then Langevin might have gotten there first [1].

Also in 1905, Langevin published his most influential work, providing the theoretical foundations for the physics of paramagnetism and diamagnetism.  He was working closely with Pierre Curie whose experimental work on magnetism had established the central temperature dependence of the phenomena.  Langevin used the new molecular model of matter to derive the temperature dependence as well as the functional dependence on magnetic field.  One surprising result was that only the valence electrons, moving relativistically, were needed to contribute to the molecular magnetic moment.  This later became one of the motivations for Bohr’s model of multi-electron atoms.

Langevin suffered personal tragedy during World War II when the Vichy government arrested him because of his outspoken opposition to fascism.  He was imprisoned and eventually released to house arrest.  In 1942, his son-in-law was executed by the Nazis, and in 1943 his daughter was sent to Auschwitz.  Fearing for his own life, Langevin escaped to Switzerland.  He returned shortly after the liberation of Paris and was joined after the end of the war by his daughter who had survived Auschwitz and later served in the Assemblée Consultative as a communist member.  Langevin passed away in 1946 and received a national funeral.  His remains lie today in the Pantheon.

## The Langevin Equation

In 1908, Langevin realized that Einstein’s 1905 theory on Brownian motion could be simplified while at the same time generalized.  Langevin introduced a new quantity into theoretical physics—the stochastic force [2].  With this new theoretical tool, he was able to work with diffusing particles in momentum space as dynamical objects with inertia buffeted by random forces, providing a Newtonian formulation for short-time effects that were averaged out and lost in Einstein’s approach.

Stochastic processes are understood by considering a dynamical flow that includes a random function.  The resulting set of equations are called the Langevin equation, namely

where fa is a set of N regular functions, and σa is the standard deviation of the a-th process out of N.  The stochastic functions ξa are in general non-differentiable but are integrable.  They have zero mean, and no temporal correlations.  The solution is an N-dimensional trajectory that has properties of a random walk superposed on the dynamics of the underlying mathematical flow.

As an example, take the case of a particle moving in a one-dimensional potential, subject to drag and to an additional stochastic force

where γ is the drag coefficient, U is a potential function and B is the velocity diffusion coefficient.  The second term in the bottom equation is the classical force from a potential function, while the third term is the stochastic force.  The crucial point is that the stochastic force causes jumps in velocity that integrate into displacements, creating a random walk superposed on the deterministic mechanics.

## Random Walk in a Harmonic Potential

Diffusion of a particle in a weak harmonic potential is equivalent to a mass on a weak spring in a thermal bath.  For short times, the particle motion looks like a random walk, but for long times, the mean-squared displacement must satisfy the equipartition relation

The Langevin equation is the starting point of motion under a stochastic force F’

where the second equation has been multiplied through by x. For a spherical particle of radius a, the viscous drag factor is

and η is the viscosity.  The term on the left of the dynamical equation can be rewritten to give

It is then necessary to take averages.  The last term on the right vanishes because of the random signs of xF’.  However, the buffeting from the random force can be viewed as arising from an effective temperature.  Then from equipartition on the velocity

this gives

Making the substitution y = <x2> gives

which is the dynamical equation for a particle in a harmonic potential subject to a constant effective force kBT.  For small objects in viscous fluids, the inertial terms are negligible relative to the other terms (see Life at small Reynolds Number [3]), so the dynamic equation is

with the general solution

For short times, this is expanded by the Taylor series to

This solution at short times describes a diffusing particle (Fickian behavior) with a diffusion coefficient D. However, for long times the solution asymptotes to an equipartition value of <x2> = kBT/k. In the intermediate time regime, the particle is walking randomly, but the mean-squared displacement is no longer growing linearly with time.

Constrained motion shows clear saturation to the size set by the physical constraints (equipartition for an oscillator or compartment size for a freely diffusing particle [4]).  However, if the experimental data do not clearly extend into the saturation time regime, then the fit to anomalous diffusion can lead to exponents that do not equal unity.  This is illustrated in Fig. 3 with asymptotic MSD compared with the anomalous diffusion equation fit for the exponent β.  Care must be exercised in the interpretation of the exponents obtained from anomalous diffusion experiments.  In particular, all constrained motion leads to subdiffusive interpretations if measured at intermediate times.

## Random Walk in a Double Potential

The harmonic potential has well-known asymptotic dynamics which makes the analytic treatment straightforward. However, the Langevin equation is general and can be applied to any potential function. Take a double-well potential as another example

The resulting Langevin equation can be solved numerically in the presence of random velocity jumps. A specific stochastic trajectory is shown in Fig. 4 that applies discrete velocity jumps using a normal distribution of jumps of variance 2B.  The notable character of this trajectory, besides the random-walk character, is the ability of the particle to jump the barrier between the wells.  In the deterministic system, the initial condition dictates which stable fixed point would be approached.  In the stochastic system, there are random fluctuations that take the particle from one basin of attraction to the other.

The stochastic long-time probability distribution p(x,v) in Fig. 5 introduces an interesting new view of trajectories in state space that have a different character than typical state-space flows.  If we think about starting a large number of systems with the same initial conditions, and then letting the stochastic dynamics take over, we can define a time-dependent probability distribution p(x,v,t) that describes the likely end-positions of an ensemble of trajectories on the state plane as a function of time.  This introduces the idea of the trajectory of a probability cloud in state space, which has a strong analogy to time-dependent quantum mechanics.  The Schrödinger equation can be viewed as a diffusion equation in complex time, which is the basis of a technique known as quantum Monte Carlo that solves for ground state wave functions using concepts of random walks.  This goes beyond the topics of classical mechanics, and it shows how such diverse fields as econophysics, diffusion, and quantum mechanics can share common tools and language.

## Stochastic Chaos

“Stochastic Chaos” sounds like an oxymoron. “Chaos” is usually synonymous with “deterministic chaos”, meaning that every next point on a trajectory is determined uniquely by its previous location–there is nothing random about the evolution of the dynamical system. It is only when one looks at long times, or at two nearby trajectories, that non-repeatable and non-predictable behavior emerges, so there is nothing stochastic about it.

On the other hand, there is nothing wrong with adding a stochastic function to the right-hand side of a deterministic flow–just as in the Langevin equation. One question immediately arises: if chaos has sensitivity to initial conditions (SIC), wouldn’t it be highly susceptible to constant buffeting by a stochastic force? Let’s take a look!

To the well-known Rössler model, add a stochastic function to one of the three equations,

in this case to the y-dot equation. This is just like the stochastic term in the random walks in the harmonic and double-well potentials. The solution is shown in Fig. 6. In addition to the familiar time-series of the Rössler model, there are stochastic jumps in the y-variable. An x-y projection similarly shows the familiar signature of the model, and the density of trajectory points is shown in the density plot on the right. The rms jump size for this simulation is approximately 10%.

Now for the supposition that because chaos has sensitivity to initial conditions that it should be highly susceptible to stochastic contributions–the answer can be seen in Fig. 7 in the state-space densities. Other than a slightly more fuzzy density for the stochastic case, the general behavior of the Rössler strange attractor is retained. The attractor is highly stable against the stochastic fluctuations. This demonstrates just how robust deterministic chaos is.

On the other hand, there is a saddle point in the Rössler dynamics a bit below the lowest part of the strange attractor in the figure, and if the stochastic jumps are too large, then the dynamics become unstable and diverge. A hint at this is already seen in the time series in Fig. 6 that shows the nearly closed orbit that occurs transiently at large negative y values. This is near the saddle point, and this trajectory is dangerously close to going unstable. Therefore, while the attractor itself is stable, anything that drives a dynamical system to a saddle point will destabilize it, so too much stochasticity can cause a sudden destruction of the attractor.

• Parts of this blog were excerpted from D. D. Nolte, Optical Interferometry for Biology and Medicine. Springer, 2012, pp. 1-354 and D. D. Nolte, Introduction to Modern Dynamics. Oxford, 2015 (first edition).

[1] A. Einstein, “Paul Langevin” in La Pensée, 12 (May-June 1947), pp. 13-14.

[2] D. S. Lemons and A. Gythiel, “Paul Langevin’s 1908 paper ”On the theory of Brownian motion”,” American Journal of Physics, vol. 65, no. 11, pp. 1079-1081, Nov (1997)

[3] E. M. Purcell, “Life at Low Reynolds-Number,” American Journal of Physics, vol. 45, no. 1, pp. 3-11, (1977)

[4] Ritchie, K., Shan, X.Y., Kondo, J., Iwasawa, K., Fujiwara, T., Kusumi, A.: Detection of non- Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 88(3), 2266–2277 (2005)

# Hermann Minkowski’s Spacetime: The Theory that Einstein Overlooked

“Society is founded on hero worship”, wrote Thomas Carlyle (1795 – 1881) in his 1840 lecture on “Hero as Divinity”—and the society of physicists is no different.  Among physicists, the hero is the genius—the monomyth who journeys into the supernatural realm of high mathematics, engages in single combat against chaos and confusion, gains enlightenment in the mysteries of the universe, and returns home to share the new understanding.  If the hero is endowed with unusual talent and achieves greatness, then mythologies are woven, creating shadows that can grow and eclipse the truth and the work of others, bestowing upon the hero recognitions that are not entirely deserved.

“Gentlemen! The views of space and time which I wish to lay before you … They are radical. Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.”

Herman Minkowski (1908)

The greatest hero of physics of the twentieth century, without question, is Albert Einstein.  He is the person most responsible for the development of “Modern Physics” that encompasses:

• Relativity theory (both special and general),
• Quantum theory (he invented the quantum in 1905—see my blog),
• Astrophysics (his field equations of general relativity were solved by Schwarzschild in 1916 to predict event horizons of black holes, and he solved his own equations to predict gravitational waves that were discovered in 2015),
• Cosmology (his cosmological constant is now recognized as the mysterious dark energy that was discovered in 2000), and
• Solid state physics (his explanation of the specific heat of crystals inaugurated the field of quantum matter).

Einstein made so many seminal contributions to so many sub-fields of physics that it defies comprehension—hence he is mythologized as genius, able to see into the depths of reality with unique insight. He deserves his reputation as the greatest physicist of the twentieth century—he has my vote, and he was chosen by Time magazine in 2000 as the Man of the Century.  But as his shadow has grown, it has eclipsed and even assimilated the work of others—work that he initially criticized and dismissed, yet later embraced so whole-heartedly that he is mistakenly given credit for its discovery.

For instance, when we think of Einstein, the first thing that pops into our minds is probably “spacetime”.  He himself wrote several popular accounts of relativity that incorporated the view that spacetime is the natural geometry within which so many of the non-intuitive properties of relativity can be understood.  When we think of time being mixed with space, making it seem that position coordinates and time coordinates share an equal place in the description of relativistic physics, it is common to attribute this understanding to Einstein.  Yet Einstein initially resisted this viewpoint and even disparaged it when he first heard it!

Spacetime was the brain-child of Hermann Minkowski.

## Minkowski in Königsberg

Hermann Minkowski was born in 1864 in Russia to German parents who moved to the city of Königsberg (King’s Mountain) in East Prussia when he was eight years old.  He entered the university in Königsberg in 1880 when he was sixteen.  Within a year, when he was only seventeen years old, and while he was still a student at the University, Minkowski responded to an announcement of the Mathematics Prize of the French Academy of Sciences in 1881.  When he submitted is prize-winning memoire, he could have had no idea that it was starting him down a path that would lead him years later to revolutionary views.

The specific Prize challenge of 1881 was to find the number of representations of an integer as a sum of five squares of integers.  For instance, every integer n > 33 can be expressed as the sum of five nonzero squares.  As an example, 42 = 22 + 22 + 32 + 32 + 42,  which is the only representation for that number.  However, there are five representation for n = 53

The task of enumerating these representations draws from the theory of quadratic forms.  A quadratic form is a function of products of numbers with integer coefficients, such as ax2 + bxy + cy2 and ax2 + by2 + cz2 + dxy + exz + fyz.  In number theory, one seeks to find integer solutions for which the quadratic form equals an integer.  For instance, the Pythagorean theorem x2 + y2 = n2 for integers is a quadratic form for which there are many integer solutions (x,y,n), known as Pythagorean triplets, such as

The topic of quadratic forms gained special significance after the work of Bernhard Riemann who established the properties of metric spaces based on the metric expression

for infinitesimal distance in a D-dimensional metric space.  This is a generalization of Euclidean distance to more general non-Euclidean spaces that may have curvature.  Minkowski would later use this expression to great advantage, developing a “Geometry of Numbers” [1] as he delved ever deeper into quadratic forms and their uses in number theory.

## Minkowski in Göttingen

After graduating with a doctoral degree in 1885 from Königsberg, Minkowski did his habilitation at the university of Bonn and began teaching, moving back to Königsberg in 1892 and then to Zurich in 1894 (where one of his students was a somewhat lazy and unimpressive Albert Einstein).  A few years later he was given an offer that he could not refuse.

At the turn of the 20th century, the place to be in mathematics was at the University of Göttingen.  It had a long tradition of mathematical giants that included Carl Friedrich Gauss, Bernhard Riemann, Peter Dirichlet, and Felix Klein.  Under the guidance of Felix Klein, Göttingen mathematics had undergone a renaissance. For instance, Klein had attracted Hilbert from the University of Königsberg in 1895.  David Hilbert had known Minkowski when they were both students in Königsberg, and Hilbert extended an invitation to Minkowski to join him in Göttingen, which Minkowski accepted in 1902.

A few years after Minkowski arrived at Göttingen, the relativity revolution broke, and both Minkowski and Hilbert began working on mathematical aspects of the new physics. They organized a colloquium dedicated to relativity and related topics, and on Nov. 5, 1907 Minkowski gave his first tentative address on the geometry of relativity.

Because Minkowski’s specialty was quadratic forms, and given his understanding of Riemann’s work, he was perfectly situated to apply his theory of quadratic forms and invariants to the Lorentz transformations derived by Poincaré and Einstein.  Although Poincaré had published a paper in 1906 that showed that the Lorentz transformation was a generalized rotation in four-dimensional space [2], Poincaré continued to discuss space and time as separate phenomena, as did Einstein.  For them, simultaneity was no longer an invariant, but events in time were still events in time and not somehow mixed with space-like properties. Minkowski recognized that Poincaré had missed an opportunity to define a four-dimensional vector space filled by four-vectors that captured all possible events in a single coordinate description without the need to separate out time and space.

Minkowski’s first attempt, presented in his 1907 colloquium, at constructing velocity four-vectors was flawed because (like so many of my mechanics students when they first take a time derivative of the four-position) he had not yet understood the correct use of proper time. But the research program he outlined paved the way for the great work that was to follow.

On Feb. 21, 1908, only 3 months after his first halting steps, Minkowski delivered a thick manuscript to the printers for an article to appear in the Göttinger Nachrichten. The title “Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern” (The Basic Equations for Electromagnetic Processes of Moving Bodies) belies the impact and importance of this very dense article [3]. In its 60 pages (with no figures), Minkowski presents the correct form for four-velocity by taking derivatives relative to proper time, and he formalizes his four-dimensional approach to relativity that became the standard afterwards. He introduces the terms spacelike vector, timelike vector, light cone and world line. He also presents the complete four-tensor form for the electromagnetic fields. The foundational work of Levi Cevita and Ricci-Curbastro on tensors was not yet well known, so Minkowski invents his own terminology of Traktor to describe it. Most importantly, he invents the terms spacetime (Raum-Zeit) and events (Erignisse) [4].

Minkowski’s four-dimensional formalism of relativistic electromagnetics was more than a mathematical trick—it uncovered the presence of a multitude of invariants that were obscured by the conventional mathematics of Einstein and Lorentz and Poincaré. In Minkowski’s approach, whenever a proper four-vector is contracted with itself (its inner product), an invariant emerges. Because there are many fundamental four-vectors, there are many invariants. These invariants provide the anchors from which to understand the complex relative properties amongst relatively moving frames.

Minkowski’s master work appeared in the Nachrichten on April 5, 1908. If he had thought that physicists would embrace his visionary perspective, he was about to be woefully disabused of that notion.

## Einstein’s Reaction

Despite his impressive ability to see into the foundational depths of the physical world, Einstein did not view mathematics as the root of reality. Mathematics for him was a tool to reduce physical intuition into quantitative form. In 1908 his fame was rising as the acknowledged leader in relativistic physics, and he was not impressed or pleased with the abstract mathematical form that Minkowski was trying to stuff the physics into. Einstein called it “superfluous erudition” [5], and complained “since the mathematics pounced on the relativity theory, I no longer understand it myself! [6]”

With his collaborator Jakob Laub (also a former student of Minkowski’s), Einstein objected to more than the hard-to-follow mathematics—they believed that Minkowski’s form of the pondermotive force was incorrect. They then proceeded to re-translate Minkowski’s elegant four-vector derivations back into ordinary vector analysis, publishing two papers in Annalen der Physik in the summer of 1908 that were politely critical of Minkowski’s approach [7-8]. Yet another of Minkowski’s students from Zurich, Gunnar Nordström, showed how to derive Minkowski’s field equations without any of the four-vector formalism.

One can only wonder why so many of his former students so easily dismissed Minkowski’s revolutionary work. Einstein had actually avoided Minkowski’s mathematics classes as a student at ETH [5], which may say something about Minkowski’s reputation among the students, although Einstein did appreciate the class on mechanics that he took from Minkowski. Nonetheless, Einstein missed the point! Rather than realizing the power and universality of the four-dimensional spacetime formulation, he dismissed it as obscure and irrelevant—perhaps prejudiced by his earlier dim view of his former teacher.

## Raum und Zeit

It is clear that Minkowski was stung by the poor reception of his spacetime theory. It is also clear that he truly believed that he had uncovered an essential new approach to physical reality. While mathematicians were generally receptive of his work, he knew that if physicists were to adopt his new viewpoint, he needed to win them over with the elegant results.

In 1908, Minkowski presented a now-famous paper Raum und Zeit at the 80th Assembly of German Natural Scientists and Physicians (21 September 1908).  In his opening address, he stated [9]:

To illustrate his arguments Minkowski constructed the most recognizable visual icon of relativity theory—the space-time diagram in which the trajectories of particles appear as “world lines”, as in Fig. 1.  On this diagram, one spatial dimension is plotted along the horizontal-axis, and the value ct (speed of light times time) is plotted along the vertical-axis.  In these units, a photon travels along a line oriented at 45 degrees, and the world-line (the name Minkowski gave to trajectories) of all massive particles must have slopes steeper than this.  For instance, a stationary particle, that appears to have no trajectory at all, executes a vertical trajectory on the space-time diagram as it travels forward through time.  Within this new formulation by Minkowski, space and time were mixed together in a single manifold—spacetime—and were no longer separate entities.

In addition to the spacetime construct, Minkowski’s great discovery was the plethora of invariants that followed from his geometry. For instance, the spacetime hyperbola

is invariant to Lorentz transformation in coordinates.  This is just a simple statement that a vector is an entity of reality that is independent of how it is described.  The length of a vector in our normal three-space does not change if we flip the coordinates around or rotate them, and the same is true for four-vectors in Minkowski space subject to Lorentz transformations.

In relativity theory, this property of invariance becomes especially useful because part of the mental challenge of relativity is that everything looks different when viewed from different frames.  How do you get a good grip on a phenomenon if it is always changing, always relative to one frame or another?  The invariants become the anchors that we can hold on to as reference frames shift and morph about us.

As an example of a fundamental invariant, the mass of a particle in its rest frame becomes an invariant mass, always with the same value.  In earlier relativity theory, even in Einstein’s papers, the mass of an object was a function of its speed.  How is the mass of an electron a fundamental property of physics if it is a function of how fast it is traveling?  The construction of invariant mass removes this problem, and the mass of the electron becomes an immutable property of physics, independent of the frame.  Invariant mass is just one of many invariants that emerge from Minkowski’s space-time description.  The study of relativity, where all things seem relative, became a study of invariants, where many things never change.  In this sense, the theory of relativity is a misnomer.  Ironically, relativity theory became the motivation of post-modern relativism that denies the existence of absolutes, even as relativity theory, as practiced by physicists, is all about absolutes.

Despite his audacious gambit to win over the physicists, Minkowski would not live to see the fruits of his effort. He died suddenly of a burst gall bladder on Jan. 12, 1909 at the age of 44.

Arnold Sommerfeld (who went on to play a central role in the development of quantum theory) took up Minkowski’s four vectors, and he systematized it in a way that was palatable to physicists.  Then Max von Laue extended it while he was working with Sommerfeld in Munich, publishing the first physics textbook on relativity theory in 1911, establishing the space-time formalism for future generations of German physicists.  Further support for Minkowski’s work came from his distinguished colleagues at Göttingen (Hilbert, Klein, Wiechert, Schwarzschild) as well as his former students (Born, Laue, Kaluza, Frank, Noether).  With such champions, Minkowski’s work was immortalized in the methodology (and mythology) of physics, representing one of the crowning achievements of the Göttingen mathematical community.

## Einstein Relents

Already in 1907 Einstein was beginning to grapple with the role of gravity in the context of relativity theory, and he knew that the special theory was just a beginning. Yet between 1908 and 1910 Einstein’s focus was on the quantum of light as he defended and extended his unique view of the photon and prepared for the first Solvay Congress of 1911. As he returned his attention to the problem of gravitation after 1910, he began to realize that Minkowski’s formalism provided a framework from which to understand the role of accelerating frames. In 1912 Einstein wrote to Sommerfeld to say [5]

I occupy myself now exclusively with the problem of gravitation . One thing is certain that I have never before had to toil anywhere near as much, and that I have been infused with great respect for mathematics, which I had up until now in my naivety looked upon as a pure luxury in its more subtle parts. Compared to this problem. the original theory of relativity is child’s play.

By the time Einstein had finished his general theory of relativity and gravitation in 1915, he fully acknowledge his indebtedness to Minkowski’s spacetime formalism without which his general theory may never have appeared.

By David D. Nolte, April 24, 2021

[1] H. Minkowski, Geometrie der Zahlen. Leipzig and Berlin: R. G. Teubner, 1910.

[2] Poincaré, H. (1906). “Sur la dynamique de l’´electron.” Rendiconti del circolo matematico di Palermo 21: 129–176.

[3] H. Minkowski, “Die Grundgleichungen für die electromagnetischen Vorgänge in bewegten Körpern,” Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, pp. 53–111, (1908)

[4] S. Walter, “Minkowski’s Modern World,” in Minkowski Spacetime: A Hundred Years Later, Petkov Ed.: Springer, 2010, ch. 2, pp. 43-61.

[5] L. Corry, “The influence of David Hilbert and Hermann Minkowski on Einstein’s views over the interrelation between physics and mathematics,” Endeavour, vol. 22, no. 3, pp. 95-97, (1998)

[6] A. Pais, Subtle is the Lord: The Science and the Life of Albert Einstein. Oxford, 2005.

[7] A. Einstein and J. Laub, “Electromagnetic basic equations for moving bodies,” Annalen Der Physik, vol. 26, no. 8, pp. 532-540, Jul (1908)

[8] A. Einstein and J. Laub, “Electromagnetic fields on quiet bodies with pondermotive energy,” Annalen Der Physik, vol. 26, no. 8, pp. 541-550, Jul (1908)

[9] Minkowski, H. (1909). “Raum und Zeit.” Jahresbericht der Deutschen Mathematikier-Vereinigung: 75-88.

# The Solvay Debates: Einstein versus Bohr

Einstein is the alpha of the quantum. Einstein is also the omega. Although he was the one who established the quantum of energy and matter (see my Blog Einstein vs Planck), Einstein pitted himself in a running debate against Niels Bohr’s emerging interpretation of quantum physics that had, in Einstein’s opinion, severe deficiencies. Between sessions during a series of conferences known as the Solvay Congresses over a period of eight years from 1927 to 1935, Einstein constructed a challenges of increasing sophistication to confront Bohr and his quasi-voodoo attitudes about wave-function collapse. To meet the challenge, Bohr sharpened his arguments and bested Einstein, who ultimately withdrew from the field of battle. Einstein, as quantum physics’ harshest critic, played a pivotal role, almost against his will, establishing the Copenhagen interpretation of quantum physics that rules to this day, and also inventing the principle of entanglement which lies at the core of almost all quantum information technology today.

### Debate Timeline

• Fifth Solvay Congress: 1927 October Brussels: Debate Round 1
• Einstein and ensembles
• Sixth Solvay Congress: 1930 Debate Round 2
• Photon in a box
• Seventh Solvay Congress: 1933
• Einstein absent (visiting the US when Hitler takes power…decides not to return to Germany.)
• Physical Review 1935: Debate Round 3
• EPR paper and Bohr’s response
• Schrödinger’s Cat
• Notable Nobel Prizes
• 1918 Planck
• 1921 Einstein
• 1922 Bohr
• 1932 Heisenberg
• 1933 Dirac and Schrödinger

## The Solvay Conferences

The Solvay congresses were unparalleled scientific meetings of their day.  They were attended by invitation only, and invitations were offered only to the top physicists concerned with the selected topic of each meeting.  The Solvay congresses were held about every three years always in Belgium, supported by the Belgian chemical industrialist Ernest Solvay.  The first meeting, held in 1911, was on the topic of radiation and quanta.

The fifth meeting, held in 1927, was on electrons and photons and focused on the recent rapid advances in quantum theory.  The old quantum guard was invited—Planck, Bohr and Einstein.  The new quantum guard was invited as well—Heisenberg, de Broglie, Schrödinger, Born, Pauli, and Dirac.  Heisenberg and Bohr joined forces to present a united front meant to solidify what later became known as the Copenhagen interpretation of quantum physics.  The basic principles of the interpretation include the wavefunction of Schrödinger, the probabilistic interpretation of Born, the uncertainty principle of Heisenberg, the complementarity principle of Bohr and the collapse of the wavefunction during measurement.  The chief conclusion that Heisenberg and Bohr sought to impress on the assembled attendees was that the theory of quantum processes was complete, meaning that unknown or uncertain  characteristics of measurements could not be attributed to lack of knowledge or understanding, but were fundamental and permanently inaccessible.

Einstein was not convinced with that argument, and he rose to his feet to object after Bohr’s informal presentation of his complementarity principle.  Einstein insisted that uncertainties in measurement were not fundamental, but were caused by incomplete information, that , if known, would accurately account for the measurement results.  Bohr was not prepared for Einstein’s critique and brushed it off, but what ensued in the dining hall and the hallways of the Hotel Metropole in Brussels over the next several days has become one of the most famous scientific debates of the modern era, known as the Bohr-Einstein debate on the meaning of quantum theory.  The debate gently raged night and day through the fifth congress, and was renewed three years later at the 1930 congress.  It finished, in a final flurry of published papers in 1935 that launched some of the central concepts of quantum theory, including the idea of quantum entanglement and, of course, Schrödinger’s cat.

Einstein’s strategy, to refute Bohr, was to construct careful thought experiments that envisioned perfect experiments, without errors, that measured properties of ideal quantum systems.  His aim was to paint Bohr into a corner from which he could not escape, caught by what Einstein assumed was the inconsistency of complementarity.  Einstein’s “thought experiments” used electrons passing through slits, diffracting as required by Schrödinger’s theory, but being detected by classical measurements.  Einstein would present a thought experiment to Bohr, who would then retreat to consider the way around Einstein’s arguments, returning the next hour or the next day with his answer, only to be confronted by yet another clever device of Einstein’s clever imagination that would force Bohr to retreat again.  The spirit of this back and forth encounter between Bohr and Einstein is caught dramatically in the words of Paul Ehrenfest who witnessed the debate first hand, partially mediating between Bohr and Einstein, both of whom he respected deeply.

“Brussels-Solvay was fine!… BOHR towering over everybody.  At first not understood at all … , then  step by step defeating everybody.  Naturally, once again the awful Bohr incantation terminology.  Impossible for anyone else to summarise … (Every night at 1 a.m., Bohr came into my room just to say ONE SINGLE WORD to me, until three a.m.)  It was delightful for me to be present during the conversation between Bohr and Einstein.  Like a game of chess, Einstein all the time with new examples.  In a certain sense a sort of Perpetuum Mobile of the second kind to break the UNCERTAINTY RELATION.  Bohr from out of philosophical smoke clouds constantly searching for the tools to crush one example after the other.  Einstein like a jack-in-the-box; jumping out fresh every morning.  Oh, that was priceless.  But I am almost without reservation pro Bohr and contra Einstein.  His attitude to Bohr is now exacly like the attitude of the defenders of absolute simultaneity towards him …” [1]

The most difficult example that Einstein constructed during the fifth Solvary Congress involved an electron double-slit apparatus that could measure, in principle, the momentum imparted to the slit by the passing electron, as shown in Fig.3.  The electron gun is a point source that emits the electrons in a range of angles that illuminates the two slits.  The slits are small relative to a de Broglie wavelength, so the electron wavefunctions diffract according to Schrödinger’s wave mechanics to illuminate the detection plate.  Because of the interference of the electron waves from the two slits, electrons are detected clustered in intense fringes separated by dark fringes.

So far, everyone was in agreement with these suggested results.  The key next step is the assumption that the electron gun emits only a single electron at a time, so that only one electron is present in the system at any given time.  Furthermore, the screen with the double slit is suspended on a spring, and the position of the screen is measured with complete accuracy by a displacement meter.  When the single electron passes through the entire system, it imparts a momentum kick to the screen, which is measured by the meter.  It is also detected at a specific location on the detection plate.  Knowing the position of the electron detection, and the momentum kick to the screen, provides information about which slit the electron passed through, and gives simultaneous position and momentum values to the electron that have no uncertainty, apparently rebutting the uncertainty principle.

This challenge by Einstein was the culmination of successively more sophisticated examples that he had to pose to combat Bohr, and Bohr was not going to let it pass unanswered.  With ingenious insight, Bohr recognized that the key element in the apparatus was the fact that the screen with the slits must have finite mass if the momentum kick by the electron were to produce a measurable displacement.  But if the screen has finite mass, and hence a finite momentum kick from the electron, then there must be an uncertainty in the position of the slits.  This uncertainty immediately translates into a washout of the interference fringes.  In fact the more information that is obtained about which slit the electron passed through, the more the interference is washed out.  It was a perfect example of Bohr’s own complementarity principle.  The more the apparatus measures particle properties, the less it measures wave properties, and vice versa, in a perfect balance between waves and particles.

Einstein grudgingly admitted defeat at the end of the first round, but he was not defeated.  Three years later he came back armed with more clever thought experiments, ready for the second round in the debate.

## The Sixth Solvay Conference: 1930

At the Solvay Congress of 1930, Einstein was ready with even more difficult challenges.  His ultimate idea was to construct a box containing photons, just like the original black bodies that launched Planck’s quantum hypothesis thirty years before.  The box is attached to a weighing scale so that the weight of the box plus the photons inside can be measured with arbitrarily accuracy. A shutter over a hole in the box is opened for a time T, and a photon is emitted.  Because the photon has energy, it has an equivalent weight (Einstein’s own famous E = mc2), and the mass of the box changes by an amount equal to the photon energy divided by the speed of light squared: m = E/c2.  If the scale has arbitrary accuracy, then the energy of the photon has no uncertainty.  In addition, because the shutter was open for only a time T, the time of emission similarly has no uncertainty.  Therefore, the product of the energy uncertainty and the time uncertainty is much smaller than Planck’s constant, apparently violating Heisenberg’s precious uncertainty principle.

Bohr was stopped in his tracks with this challenge.  Although he sensed immediately that Einstein had missed something (because Bohr had complete confidence in the uncertainty principle), he could not put his finger immediately on what it was.  That evening he wandered from one attendee to another, very unhappy, trying to persuade them and saying that Einstein could not be right because it would be the end of physics.  At the end of the evening, Bohr was no closer to a solution, and Einstein was looking smug.  However, by the next morning Bohr reappeared tired but in high spirits, and he delivered a master stroke.  Where Einstein had used special relaitivity against Bohr, Bohr now used Einstein’s own general relativity against him.

The key insight was that the weight of the box must be measured, and the process of measurement was just as important as the quantum process being measured—this was one of the cornerstones of the Copenhagen interpretation.  So Bohr envisioned a measuring apparatus composed of a spring and a scale with the box suspended in gravity from the spring.  As the photon leaves the box, the weight of the box changes, and so does the deflection of the spring, changing the height of the box.  This change in height, in a gravitational potential, causes the timing of the shutter to change according to the law of gravitational time dilation in general relativity.  By calculating the the general relativistic uncertainty in the time, coupled with the special relativistic uncertainty in the weight of the box, produced a product that was at least as big as Planck’s constant—Heisenberg’s uncertainty principle was saved!

## Entanglement and Schrödinger’s Cat

Einstein ceded the point to Bohr but was not convinced. He still believed that quantum mechanics was not a “complete” theory of quantum physics and he continued to search for the perfect thought experiment that Bohr could not escape. Even today when we have become so familiar with quantum phenomena, the Copenhagen interpretation of quantum mechanics has weird consequences that seem to defy common sense, so it is understandable that Einstein had his reservations.

After the sixth Solvay congress Einstein and Schrödinger exchanged many letters complaining to each other about Bohr’s increasing strangle-hold on the interpretation of quantum mechanics. Egging each other on, they both constructed their own final assault on Bohr. The irony is that the concepts they devised to throw down quantum mechanics have today become cornerstones of the theory. For Einstein, his final salvo was “Entanglement”. For Schrödinger, his final salvo was his “cat”. Today, Entanglement and Schrödinger’s Cat have become enshrined on the alter of quantum interpretation even though their original function was to thwart that interpretation.

The final round of the debate was carried out, not at a Solvay congress, but in the Physical review journal by Einstein [2] and Bohr [3], and in the Naturwissenshaften by Schrödinger [4].

In 1969, Heisenberg looked back on these years and said,

To those of us who participated in the development of atomic theory, the five years following the Solvay Conference in Brussels in 1927 looked so wonderful that we often spoke of them as the golden age of atomic physics. The great obstacles that had occupied all our efforts in the preceding years had been cleared out of the way, the gate to an entirely new field, the quantum mechanics of the atomic shells stood wide open, and fresh fruits seemed ready for the picking. [5]

## References

[1] A. Whitaker, Einstein, Bohr, and the quantum dilemma : from quantum theory to quantum information, 2nd ed. Cambridge University Press, 2006. (pg. 210)

[2] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Physical Review, vol. 47, no. 10, pp. 0777-0780, May (1935)

[3] N. Bohr, “Can quantum-mechanical description of physical reality be considered complete?,” Physical Review, vol. 48, no. 8, pp. 696-702, Oct (1935)

[4] E. Schrodinger, “The current situation in quantum mechanics,” Naturwissenschaften, vol. 23, pp. 807-812, (1935)

[5] W Heisenberg, Physics and beyond : Encounters and conversations (Harper, New York, 1971)

# A Commotion in the Stars: The History of the Doppler Effect

Christian Andreas Doppler (1803 – 1853) was born in Salzburg, Austria, to a longstanding family of stonemasons.  As a second son, he was expected to help his older brother run the business, so his Father had him tested in his 18th year for his suitability for a career in business.  The examiner Simon Stampfer (1790 – 1864), an Austrian mathematician and inventor teaching at the Lyceum in Salzburg, discovered that Doppler had a gift for mathematics and was better suited for a scientific career.  Stampfer’s enthusiasm convinced Doppler’s father to enroll him in the Polytechnik Institute in Vienna (founded only a few years earlier in 1815) where he took classes in mathematics, mechanics and physics [1] from 1822 to 1825.  Doppler excelled in his courses, but was dissatisfied with the narrowness of the education, yearning for more breadth and depth in his studies and for more significance in his positions, feelings he would struggle with for his entire short life.  He left Vienna, returning to the Lyceum in Salzburg to round out his education with philosophy, languages and poetry.  Unfortunately, this four-year detour away from technical studies impeded his ability to gain a permanent technical position, so he began a temporary assistantship with a mathematics professor at Vienna.  As he approached his 30th birthday this term expired without prospects.  He was about to emigrate to America when he finally received an offer to teach at a secondary school in Prague.

To read about the attack by Joseph Petzval on Doppler’s effect and the effect it had on Doppler, see my feature article “The Fall and Rise of the Doppler Effect in Physics Today, 73(3) 30, March (2020).

Salzburg Austria

## Doppler in Prague

Prague gave Doppler new life.  He was a professor with a position that allowed him to marry the daughter of a sliver and goldsmith from Salzburg.  He began to publish scholarly papers, and in 1837 was appointed supplementary professor of Higher Mathematics and Geometry at the Prague Technical Institute, promoted to full professor in 1841.  It was here that he met the unusual genius Bernard Bolzano (1781 – 1848), recently returned from political exile in the countryside.  Bolzano was a philosopher and mathematician who developed rigorous concepts of mathematical limits and is famous today for his part in the Bolzano-Weierstrass theorem in functional analysis, but he had been too liberal and too outspoken for the conservative Austrian regime and had been dismissed from the University in Prague in 1819.  He was forbidden to publish his work in Austrian journals, which is one reason why much of Bolzano’s groundbreaking work in functional analysis remained unknown during his lifetime.  However, he participated in the Bohemian Society for Science from a distance, recognizing the inventive tendencies in the newcomer Doppler and supporting him for membership in the Bohemian Society.  When Bolzano was allowed to return in 1842 to the Polytechnic Institute in Prague, he and Doppler became close friends as kindred spirits.

Prague, Czech Republic

On May 25, 1842, Bolzano presided as chairman over a meeting of the Bohemian Society for Science on the day that Doppler read a landmark paper on the color of stars to a meagre assembly of only five regular members of the Society [2].  The turn-out was so small that the meeting may have been held in the robing room of the Society rather than in the meeting hall itself.  Leading up to this famous moment, Doppler’s interests were peripatetic, ranging widely over mathematical and physical topics, but he had lately become fascinated by astronomy and by the phenomenon of stellar aberration.  Stellar aberration was discovered by James Bradley in 1729 and explained as the result of the Earth’s yearly motion around the Sun, causing the apparent location of a distant star to change slightly depending on the direction of the Earth’s motion.  Bradley explained this in terms of the finite speed of light and was able to estimate it to within several percent [3].  As Doppler studied Bradley aberration, he wondered how the relative motion of the Earth would affect the color of the star.  By making a simple analogy of a ship traveling with, or against, a series of ocean waves, he concluded that the frequency of impact of the peaks and troughs of waves on the ship was no different than the arrival of peaks and troughs of the light waves impinging on the eye.  Because perceived color was related to the frequency of excitation in the eye, he concluded that the color of light would be slightly shifted to the blue if approaching, and to the red if receding from, the light source.

Doppler wave fronts from a source emitting spherical waves moving with speeds β relative to the speed of the wave in the medium.

Doppler calculated the magnitude of the effect by taking a simple ratio of the speed of the observer relative to the speed of light.  What he found was that the speed of the Earth, though sufficient to cause the detectable aberration in the position of stars, was insufficient to produce a noticeable change in color.  However, his interest in astronomy had made him familiar with binary stars where the relative motion of the light source might be high enough to cause color shifts.  In fact, in the star catalogs there were examples of binary stars that had complementary red and blue colors.  Therefore, the title of his paper, published in the Proceedings of the Royal Bohemian Society of Sciences a few months after he read it to the society, was “On the Coloured Light of the Double Stars and Certain Other Stars of the Heavens: Attempt at a General Theory which Incorporates Bradley’s Theorem of Aberration as an Integral Part” [4]

Title page of Doppler’s 1842 paper introducing the Doppler Effect.

Doppler’s analogy was correct, but like all analogies not founded on physical law, it differed in detail from the true nature of the phenomenon.  By 1842 the transverse character of light waves had been thoroughly proven through the work of Fresnel and Arago several decades earlier, yet Doppler held onto the old-fashioned notion that light was composed of longitudinal waves.  Bolzano, fully versed in the transverse nature of light, kindly published a commentary shortly afterwards [5] showing how the transverse effect for light, and a longitudinal effect for sound, were both supported by Doppler’s idea.  Yet Doppler also did not know that speeds in visual binaries were too small to produce noticeable color effects to the unaided eye.  Finally, (and perhaps the greatest flaw in his argument on the color of stars) a continuous spectrum that extends from the visible into the infrared and ultraviolet would not change color because all the frequencies would shift together preserving the flat (white) spectrum.

The simple algebraic derivation of the Doppler Effect in the 1842 publication..

Doppler’s twelve years in Prague were intense.  He was consumed by his Society responsibilities and by an extremely heavy teaching load that included personal exams of hundreds of students.  The only time he could be creative was during the night while his wife and children slept.  Overworked and running on too little rest, his health already frail with the onset of tuberculosis, Doppler collapsed, and he was unable to continue at the Polytechnic.  In 1847 he transferred to the School of Mines and Forrestry in Schemnitz (modern Banská Štiavnica in Slovakia) with more pay and less work.  Yet the revolutions of 1848 swept across Europe, with student uprisings, barricades in the streets, and Hungarian liberation armies occupying the cities and universities, giving him no peace.  Providentially, his former mentor Stampfer retired from the Polytechnic in Vienna, and Doppler was called to fill the vacancy.

Although Doppler was named the Director of Austria’s first Institute of Physics and was elected to the National Academy, he ran afoul of one of the other Academy members, Joseph Petzval (1807 – 1891), who persecuted Doppler and his effect.  To read a detailed description of the attack by Petzval on Doppler’s effect and the effect it had on Doppler, see my feature article “The Fall and Rise of the Doppler Effect” in Physics Today, March issue (2020).

Christian Doppler

## Voigt’s Transformation

It is difficult today to appreciate just how deeply engrained the reality of the luminiferous ether was in the psyche of the 19th century physicist.  The last of the classical physicists were reluctant even to adopt Maxwell’s electromagnetic theory for the explanation of optical phenomena, and as physicists inevitably were compelled to do so, some of their colleagues looked on with dismay and disappointment.  This was the situation for Woldemar Voigt (1850 – 1919) at the University of Göttingen, who was appointed as one of the first professors of physics there in 1883, to be succeeded in later years by Peter Debye and Max Born.  Voigt received his doctorate at the University of Königsberg under Franz Neumann, exploring the elastic properties of rock salt, and at Göttingen he spent a quarter century pursuing experimental and theoretical research into crystalline properties.  Voigt’s research, with students like Paul Drude, laid the foundation for the modern field of solid state physics.  His textbook Lehrbuch der Kristallphysik published in 1910 remained influential well into the 20th century because it adopted mathematical symmetry as a guiding principle of physics.  It was in the context of his studies of crystal elasticity that he introduced the word “tensor” into the language of physics.

At the January 1887 meeting of the Royal Society of Science at Göttingen, three months before Michelson and Morely began their reality-altering experiments at the Case Western Reserve University in Cleveland Ohio, Voit submitted a paper deriving the longitudinal optical Doppler effect in an incompressible medium.  He was responding to results published in 1886 by Michelson and Morely on their measurements of the Fresnel drag coefficient, which was the precursor to their later results on the absolute motion of the Earth through the ether.

Fresnel drag is the effect of light propagating through a medium that is in motion.  The French physicist Francois Arago (1786 – 1853) in 1810 had attempted to observe the effects of corpuscles of light emitted from stars propagating with different speeds through the ether as the Earth spun on its axis and traveled around the sun.  He succeeded only in observing ordinary stellar aberration.  The absence of the effects of motion through the ether motivated Augustin-Jean Fresnel (1788 – 1827) to apply his newly-developed wave theory of light to explain the null results.  In 1818 Fresnel derived an expression for the dragging of light by a moving medium that explained the absence of effects in Arago’s observations.  For light propagating through a medium of refractive index n that is moving at a speed v, the resultant velocity of light is

where the last term in parenthesis is the Fresnel drag coefficient.  The Fresnel drag effect supported the idea of the ether by explaining why its effects could not be observed—a kind of Catch-22—but it also applied to light moving through a moving dielectric medium.  In 1851, Fizeau used an interferometer to measure the Fresnel drag coefficient for light moving through moving water, arriving at conclusions that directly confirmed the Fresnel drag effect.  The positive experiments of Fizeau, as well as the phenomenon of stellar aberration, would be extremely influential on the thoughts of Einstein as he developed his approach to special relativity in 1905.  They were also extremely influential to Michelson, Morley and Voigt.

In his paper on the absence of the Fresnel drag effect in the first Michelson-Morley experiment, Voigt pointed out that an equation of the form

is invariant under the transformation

From our modern vantage point, we immediately recognize (to within a scale factor) the Lorentz transformation of relativity theory.  The first equation is common Galilean relativity, but the last equation was something new, introducing a position-dependent time as an observer moved with speed  relative to the speed of light [6].  Using these equations, Voigt was the first to derive the longitudinal (conventional) Doppler effect from relativistic effects.

Voigt’s derivation of the longitudinal Doppler effect used a classical approach that is still used today in Modern Physics textbooks to derive the Doppler effect.  The argument proceeds by considering a moving source that emits a continuous wave in the direction of motion.  Because the wave propagates at a finite speed, the moving source chases the leading edge of the wave front, catching up by a small amount by the time a single cycle of the wave has been emitted.  The resulting compressed oscillation represents a blue shift of the emitted light.  By using his transformations, Voigt arrived at the first relativistic expression for the shift in light frequency.  At low speeds, Voigt’s derivation reverted to Doppler’s original expression.

A few months after Voigt delivered his paper, Michelson and Morley announced the results of their interferometric measurements of the motion of the Earth through the ether—with their null results.  In retrospect, the Michelson-Morley experiment is viewed as one of the monumental assaults on the old classical physics, helping to launch the relativity revolution.  However, in its own day, it was little more than just another null result on the ether.  It did incite Fitzgerald and Lorentz to suggest that length of the arms of the interferometer contracted in the direction of motion, with the eventual emergence of the full Lorentz transformations by 1904—seventeen years after the Michelson results.

In 1904 Einstein, working in relative isolation at the Swiss patent office, was surprisingly unaware of the latest advances in the physics of the ether.  He did not know about Voigt’s derivation of the relativistic Doppler effect  (1887) as he had not heard of Lorentz’s final version of relativistic coordinate transformations (1904).  His thinking about relativistic effects focused much farther into the past, to Bradley’s stellar aberration (1725) and Fizeau’s experiment of light propagating through moving water (1851).  Einstein proceeded on simple principles, unencumbered by the mental baggage of the day, and delivered his beautifully minimalist theory of special relativity in his famous paper of 1905 “On the Electrodynamics of Moving Bodies”, independently deriving the Lorentz coordinate transformations [7]

One of Einstein’s talents in theoretical physics was to predict new phenomena as a way to provide direct confirmation of a new theory.  This was how he later famously predicted the deflection of light by the Sun and the gravitational frequency shift of light.  In 1905 he used his new theory of special relativity to predict observable consequences that included a general treatment of the relativistic Doppler effect.  This included the effects of time dilation in addition to the longitudinal effect of the source chasing the wave.  Time dilation produced a correction to Doppler’s original expression for the longitudinal effect that became significant at speeds approaching the speed of light.  More significantly, it predicted a transverse Doppler effect for a source moving along a line perpendicular to the line of sight to an observer.  This effect had not been predicted either by Doppler or by Voigt.  The equation for the general Doppler effect for any observation angle is

Just as Doppler had been motivated by Bradley’s aberration of starlight when he conceived of his original principle for the longitudinal Doppler effect, Einstein combined the general Doppler effect with his results for the relativistic addition of velocities (also in his 1905 Annalen paper) as the conclusive treatment of stellar aberration nearly 200 years after Bradley first observed the effect.

Despite the generally positive reception of Einstein’s theory of special relativity, some of its consequences were anathema to many physicists at the time.  A key stumbling block was the question whether relativistic effects, like moving clocks running slowly, were only apparent, or were actually real, and Einstein had to fight to convince others of its reality.  When Johannes Stark (1874 – 1957) observed Doppler line shifts in ion beams called “canal rays” in 1906 (Stark received the 1919 Nobel prize in part for this discovery) [8], Einstein promptly published a paper suggesting how the canal rays could be used in a transverse geometry to directly detect time dilation through the transverse Doppler effect [9].  Thirty years passed before the experiment was performed with sufficient accuracy by Herbert Ives and G. R. Stilwell in 1938 to measure the transverse Doppler effect [10].  Ironically, even at this late date, Ives and Stilwell were convinced that their experiment had disproved Einstein’s time dilation by supporting Lorentz’ contraction theory of the electron.  The Ives-Stilwell experiment was the first direct test of time dilation, followed in 1940 by muon lifetime measurements [11].

D. D. Nolte, “The Fall and Rise of the Doppler Effect“, Phys. Today 73(3) pg. 30 (March, 2020)

## Notes

[1] pg. 15, Eden, A. (1992). The search for Christian Doppler. Wien, Springer-Verlag.

[2] pg. 30, Eden

[3] Bradley, J (1729). “Account of a new discoved Motion of the Fix’d Stars”. Phil Trans. 35: 637–660.

[4] C. A. DOPPLER, “Über das farbige Licht der Doppelsterne und einiger anderer Gestirne des Himmels (About the coloured light of the binary stars and some other stars of the heavens),” Proceedings of the Royal Bohemian Society of Sciences, vol. V, no. 2, pp. 465–482, (Reissued 1903) (1842).

[5] B. Bolzano, “Ein Paar Bemerkunen über die Neu Theorie in Herrn Professor Ch. Doppler’s Schrift “Über das farbige Licht der Doppersterne und eineger anderer Gestirnedes Himmels”,” Pogg. Anal. der Physik und Chemie, vol. 60, p. 83, 1843; B. Bolzano, “Christian Doppler’s neuste Leistunen af dem Gebiet der physikalischen Apparatenlehre, Akoustik, Optik and optische Astronomie,” Pogg. Anal. der Physik und Chemie, vol. 72, pp. 530-555, 1847.

[6] W. Voigt, “Uber das Doppler’sche Princip,” Göttinger Nachrichten, vol. 7, pp. 41–51, (1887). The common use of c to express the speed of light came later from Voigt’s student Paul Drude.

[7] A. Einstein, “On the electrodynamics of moving bodies,” Annalen Der Physik, vol. 17, pp. 891-921, 1905.

[8] J. Stark, W. Hermann, and S. Kinoshita, “The Doppler effect in the spectrum of mercury,” Annalen Der Physik, vol. 21, pp. 462-469, Nov 1906.

[9] A. Einstein, “”Über die Möglichkeit einer neuen Prüfung des Relativitätsprinzips”,” vol. 328, pp. 197–198, 1907.

[10] H. E. Ives and G. R. Stilwell, “An experimental study of the rate of a moving atomic clock,” Journal of the Optical Society of America, vol. 28, p. 215, 1938.

[11] B. Rossi and D. B. Hall, “Variation of the Rate of Decay of Mesotrons with Momentum,” Physical Review, vol. 59, pp. 223–228, 1941.

# Who Invented the Quantum? Einstein vs. Planck

Albert Einstein defies condensation—it is impossible to condense his approach, his insight, his motivation—into a single word like “genius”.  He was complex, multifaceted, contradictory, revolutionary as well as conservative.  Some of his work was so simple that it is hard to understand why no-one else did it first, even when they were right in the middle of it.  Lorentz and Poincaré spring to mind—they had been circling the ideas of spacetime for decades—but never stepped back to see what the simplest explanation could be.  Einstein did, and his special relativity was simple and beautiful, and the math is just high-school algebra.  On the other hand, parts of his work—like gravitation—are so embroiled in mathematics and the religion of general covariance that it remains opaque to physics neophytes 100 years later and is usually reserved for graduate study.

Yet there is a third thread in Einstein’s work that relies on pure intuition—neither simple nor complicated—but almost impossible to grasp how he made his leap.  This was the case when he proposed the real existence of the photon—the quantum particle of light.  For ten years after this proposal, it was considered by almost everyone to be his greatest blunder. It even came up when Planck was nominating Einstein for membership in the German Academy of Science. Planck said

That he may sometimes have missed the target of his speculations, as for example, in his hypothesis of light quanta, cannot really be held against him.

In this single statement, we have the father of the quantum being criticized by the father of the quantum discontinuity.

## Max Planck’s Discontinuity

In histories of the development of quantum theory, the German physicist Max Planck (1858—1947) is characterized as an unlikely revolutionary.  He was an establishment man, in the stolid German tradition, who was already embedded in his career, in his forties, holding a coveted faculty position at the University of Berlin.  In his research, he was responding to a theoretical challenge issued by Kirchhoff many years ago in 1860 to find the function of temperature and wavelength that described and explained the observed spectrum of radiating bodies.  Planck was not looking for a revolution.  In fact, he was looking for the opposite.  One of his motivations in studying the thermodynamics of electromagnetic radiation was to rebut the statistical theories of Boltzmann.  Planck had never been convinced by the atomistic and discrete approach Boltzmann had used to explain entropy and the second law of thermodynamics.  With the continuum of light radiation he thought he had the perfect system that would show how entropy behaved in a continuous manner, without the need for discrete quantities.

Therefore, Planck’s original intentions were to use blackbody radiation to argue against Boltzmann—to set back the clock.  For this reason, not only was Planck an unlikely revolutionary, he was a counter-revolutionary.  But Planck was a revolutionary because that is what he did, whatever his original intentions were, and he accepted his role as a revolutionary when he had the courage to stand in front of his scientific peers and propose a quantum hypothesis that lay at the heart of physics.

Blackbody radiation, at the end of the nineteenth century, was a topic of keen interest and had been measured with high precision.  This was in part because it was such a “clean” system, having fundamental thermodynamic properties independent of any of the material properties of the black body, unlike the so-called ideal gases, which always showed some dependence on the molecular properties of the gas. The high-precision measurements of blackbody radiation were made possible by new developments in spectrometers at the end of the century, as well as infrared detectors that allowed very precise and repeatable measurements to be made of the spectrum across broad ranges of wavelengths.

In 1893 the German physicist Wilhelm Wien (1864—1928) had used adiabatic expansion arguments to derive what became known as Wien’s Displacement Law that showed a simple linear relationship between the temperature of the blackbody and the peak wavelength.  Later, in 1896, he showed that the high-frequency behavior could be described by an exponential function of temperature and wavelength that required no other properties of the blackbody.  This was approaching the solution of Kirchhoff’s challenge of 1860 seeking a universal function.  However, at lower frequencies Wien’s approximation failed to match the measured spectrum.  In mid-year 1900, Planck was able to define a single functional expression that described the experimentally observed spectrum.  Planck had succeeded in describing black-body radiation, but he had not satisfied Kirchhoff’s second condition—to explain it.

Therefore, to describe the blackbody spectrum, Planck modeled the emitting body as a set of ideal oscillators.  As an expert in the Second Law, Planck derived the functional form for the radiation spectrum, from which he found the entropy of the oscillators that produced the spectrum.  However, once he had the form for the entropy, he needed to explain why it took that specific form.  In this sense, he was working backwards from a known solution rather than forwards from first principles.  Planck was at an impasse.  He struggled but failed to find any continuum theory that could work.

Then Planck turned to Boltzmann’s statistical theory of entropy, the same theory that he had previously avoided and had hoped to discredit.  He described this as “an act of despair … I was ready to sacrifice any of my previous convictions about physics.”  In Boltzmann’s expression for entropy, it was necessary to “count” possible configurations of states.  But counting can only be done if the states are discrete.  Therefore, he lumped the energies of the oscillators into discrete ranges, or bins, that he called “quanta”.  The size of the bins was proportional to the frequency of the oscillator, and the proportionality constant had the units of Maupertuis’ quantity of action, so Planck called it the “quantum of action”. Finally, based on this quantum hypothesis, Planck derived the functional form of black-body radiation.

Planck presented his findings at a meeting of the German Physical Society in Berlin on November 15, 1900, introducing the word quantum (plural quanta) into physics from the Latin word that means quantity [1].  It was a casual meeting, and while the attendees knew they were seeing an intriguing new physical theory, there was no sense of a revolution.  But Planck himself was aware that he had created something fundamentally new.  The radiation law of cavities depended on only two physical properties—the temperature and the wavelength—and on two constants—Boltzmann’s constant kB and a new constant that later became known as Planck’s constant h = ΔE/f = 6.6×10-34 J-sec.  By combining these two constants with other fundamental constants, such as the speed of light, Planck was able to establish accurate values for long-sought constants of nature, like Avogadro’s number and the charge of the electron.

Although Planck’s quantum hypothesis in 1900 explained the blackbody radiation spectrum, his specific hypothesis was that it was the interaction of the atoms and the light field that was somehow quantized.  He certainly was not thinking in terms of individual quanta of the light field.

## Einstein’s Quantum

When Einstein analyzed the properties of the blackbody radiation in 1905, using his deep insight into statistical mechanics, he was led to the inescapable conclusion that light itself must be quantized in amounts E = hf, where h is Planck’s constant and f is the frequency of the light field.  Although this equation is exactly the same as Planck’s from 1900, the meaning was completely different.  For Planck, this was the discreteness of the interaction of light with matter.  For Einstein, this was the quantum of light energy—whole and indivisible—just as if the light quantum were a particle with particle properties.  For this reason, we can answer the question posed in the title of this Blog—Einstein takes the honor of being the inventor of the quantum.

Einstein’s clarity of vision is a marvel to behold even to this day.  His special talent was to take simple principles, ones that are almost trivial and beyond reproach, and to derive something profound.  In Special Relativity, he simply assumed the constancy of the speed of light and derived Lorentz’s transformations that had originally been based on obtuse electromagnetic arguments about the electron.  In General Relativity, he assumed that free fall represented an inertial frame, and he concluded that gravity must bend light.  In quantum theory, he assumed that the low-density limit of Planck’s theory had to be consistent with light in thermal equilibrium in thermal equilibrium with the black body container, and he concluded that light itself must be quantized into packets of indivisible energy quanta [2].  One immediate consequence of this conclusion was his simple explanation of the photoelectric effect for which the energy of an electron ejected from a metal by ultraviolet irradiation is a linear function of the frequency of the radiation.  Einstein published his theory of the quanta of light [3] as one of his four famous 1905 articles in Annalen der Physik in his Annus Mirabilis

Einstein’s theory of light quanta was controversial and was slow to be accepted.  It is ironic that in 1914 when Einstein was being considered for a position at the University in Berlin, Planck himself, as he championed Einstein’s case to the faculty, implored his colleagues to accept Einstein despite his ill-conceived theory of light quanta [4].  This comment by Planck goes far to show how Planck, father of the quantum revolution, did not fully grasp, even by 1914, the fundamental nature and consequences of his original quantum hypothesis.  That same year, the American physicist Robert Millikan (1868—1953) performed a precise experimental measurement of the photoelectric effect, with the ostensible intention of proving Einstein wrong, but he accomplished just the opposite—providing clean experimental evidence confirming Einstein’s theory of the photoelectric effect.

## The Stimulated Emission of Light

About a year after Millikan proved that the quantum of energy associated with light absorption was absorbed as a whole quantum of energy that was not divisible, Einstein took a step further in his theory of the light quantum. In 1916 he published a paper in the proceedings of the German Physical Society that explored how light would be in a state of thermodynamic equilibrium when interacting with atoms that had discrete energy levels. Once again he used simple arguments, this time using the principle of detailed balance, to derive a new and unanticipated property of light—stimulated emission!

The stimulated emission of light occurs when an electron is in an excited state of a quantum system, like an atom, and an incident photon stimulates the emission of a second photon that has the same energy and phase as the first photon. If there are many atoms in the excited state, then this process leads to a chain reaction as 1 photon produces 2, and 2 produce 4, and 4 produce 8, etc. This exponential gain in photons with the same energy and phase is the origin of laser radiation. At the time that Einstein proposed this mechanism, lasers were half a century in the future, but he was led to this conclusion by extremely simple arguments about transition rates.

Detailed balance is a principle that states that in thermal equilibrium all fluxes are balanced. In the case of atoms with ground states and excited states, this principle requires that as many transitions occur from the ground state to the excited state as from the excited state to the ground state. The crucial new element that Einstein introduced was to distinguish spontaneous emission from stimulated emission. Just as the probability to absorb a photon must be proportional to the photon density, there must be an equivalent process that de-excites the atom that also must be proportional the photon density. In addition, an electron must be able to spontaneously emit a photon with a rate that is independent of photon density. This leads to distinct coefficients in the transition rate equations that are today called the “Einstein A and B coefficients”. The B coefficients relate to the photon density, while the A coefficient relates to spontaneous emission.

Using the principle of detailed balance together with his A and B coefficients as well as Boltzmann factors describing the number of excited states relative to ground state atoms in equilibrium at a given temperature, Einstein was able to derive an early form of what is today called the Bose-Einstein occupancy function for photons.

## Derivation of the Einstein A and B Coefficients

Detailed balance requires the rate from m to n to be the same as the rate from n to m

where the first term is the spontaneous emission rate from the excited state m to the ground state n, the second term is the stimulated emission rate, and the third term (on the right) is the absorption rate from n to m. The numbers in each state are Nm and Nn, and the density of photons is ρ. The relative numbers in the excited state relative to the ground state is given by the Boltzmann factor

By assuming that the stimulated transition coefficient from n to m is the same as m to n, and inserting the Boltzmann factor yields

The Planck density of photons for ΔE = hf is

which yields the final relation between the spontaneous emission coefficient and the stimulated emission coefficient

The total emission rate is

where the p-bar is the average photon number in the cavity. One of the striking aspects of this derivation is that no assumptions are made about the physical mechanisms that determine the coefficient B. Only arguments of detailed balance are required to arrive at these results.

## Einstein’s Quantum Legacy

Einstein was awarded the Nobel Prize in 1921 for the photoelectric effect, not for the photon nor for any of Einstein’s other theoretical accomplishments.  Even in 1921, the quantum nature of light remained controversial.  It was only in 1923, after the American physicist Arthur Compton (1892—1962) showed that energy and momentum were conserved in the scattering of photons from electrons, that the quantum nature of light began to be accepted.  The very next year, in 1924, the quantum of light was named the “photon” by the American American chemical physicist Gilbert Lewis (1875—1946).

A blog article like this, that attributes the invention of the quantum to Einstein rather than Planck, must say something about the irony of this attribution.  If Einstein is the father of the quantum, he ultimately was led to disinherit his own brain child.  His final and strongest argument against the quantum properties inherent in the Copenhagen Interpretation was his famous EPR paper which, against his expectations, launched the concept of entanglement that underlies the coming generation of quantum computers.

By David D. Nolte, Jan. 13, 2020

## Einstein’s Quantum Timeline

1900 – Planck’s quantum discontinuity for the calculation of the entropy of blackbody radiation.

1905 – Einstein’s “Miracle Year”. Proposes the light quantum.

1911 – First Solvay Conference on the theory of radiation and quanta.

1913 – Bohr’s quantum theory of hydrogen.

1914 – Einstein becomes a member of the German Academy of Science.

1915 – Millikan measurement of the photoelectric effect.

1916 – Einstein proposes stimulated emission.

1921 – Einstein receives Nobel Prize for photoelectric effect and the light quantum. Third Solvay Conference on atoms and electrons.

1927 – Heisenberg’s uncertainty relation. Fifth Solvay International Conference on Electrons and Photons in Brussels. “First” Bohr-Einstein debate on indeterminancy in quantum theory.

1930 – Sixth Solvay Conference on magnetism. “Second” Bohr-Einstein debate.

1935 – Einstein-Podolsky-Rosen (EPR) paper on the completeness of quantum mechanics.

## Selected Einstein Quantum Papers

Einstein, A. (1905). “Generation and conversion of light with regard to a heuristic point of view.” Annalen Der Physik 17(6): 132-148.

Einstein, A. (1907). “Die Plancksche Theorie der Strahlung und die Theorie der spezifischen W ̈arme.” Annalen der Physik 22: 180–190.

Einstein, A. (1909). “On the current state of radiation problems.” Physikalische Zeitschrift 10: 185-193.

Einstein, A. and O. Stern (1913). “An argument for the acceptance of molecular agitation at absolute zero.” Annalen Der Physik 40(3): 551-560.

Einstein, A. (1916). “Strahlungs-Emission un -Absorption nach der Quantentheorie.” Verh. Deutsch. Phys. Ges. 18: 318.

Einstein, A. (1917). “Quantum theory of radiation.” Physikalische Zeitschrift 18: 121-128.

Einstein, A., B. Podolsky and N. Rosen (1935). “Can quantum-mechanical description of physical reality be considered complete?” Physical Review 47(10): 0777-0780.

## Notes

[1] M. Planck, “Elementary quanta of matter and electricity,” Annalen Der Physik, vol. 4, pp. 564-566, Mar 1901.

[2] Klein, M. J. (1964). Einstein’s First Paper on Quanta. The natural philosopher. D. A. Greenberg and D. E. Gershenson. New York, Blaidsdell. 3.

[3] A. Einstein, “Generation and conversion of light with regard to a heuristic point of view,” Annalen Der Physik, vol. 17, pp. 132-148, Jun 1905.

[4] Chap. 2 in “Mind at Light Speed“, by David Nolte (Free Press, 2001)

[5] Einstein, A. (1916). “Strahlungs-Emission un -Absorption nach der Quantentheorie.” Verh. Deutsch. Phys. Ges. 18: 318.

[6] Einstein, A. (1917). “Quantum theory of radiation.” Physikalische Zeitschrift 18: 121-128.

# The Physics of Modern Dynamics (with Python Programs)

It is surprising how much of modern dynamics boils down to an extremely simple formula

This innocuous-looking equation carries such riddles, such surprises, such unintuitive behavior that it can become the object of study for life.  This equation is called a vector flow equation, and it can be used to capture the essential physics of economies, neurons, ecosystems, networks, and even orbits of photons around black holes.  This equation is to modern dynamics what F = ma was to classical mechanics.  It is the starting point for understanding complex systems.

## The Magic of Phase Space

The apparent simplicity of the “flow equation” masks the complexity it contains.  It is a vector equation because each “dimension” is a variable of a complex system.  Many systems of interest may have only a few variables, but ecosystems and economies and social networks may have hundreds or thousands of variables.  Expressed in component format, the flow equation is

where the superscript spans the number of variables.  But even this masks all that can happen with such an equation. Each of the functions fa can be entirely different from each other, and can be any type of function, whether polynomial, rational, algebraic, transcendental or composite, although they must be single-valued.  They are generally nonlinear, and the limitless ways that functions can be nonlinear is where the richness of the flow equation comes from.

The vector flow equation is an ordinary differential equation (ODE) that can be solved for specific trajectories as initial value problems.  A single set of initial conditions defines a unique trajectory.  For instance, the trajectory for a 4-dimensional example is described as the column vector

which is the single-parameter position vector to a point in phase space, also called state space.  The point sweeps through successive configurations as a function of its single parameter—time.  This trajectory is also called an orbit.  In classical mechanics, the focus has tended to be on the behavior of specific orbits that arise from a specific set of initial conditions.  This is the classic “rock thrown from a cliff” problem of introductory physics courses.  However, in modern dynamics, the focus shifts away from individual trajectories to encompass the set of all possible trajectories.

## Why is Modern Dynamics part of Physics?

If finding the solutions to the “x-dot equals f” vector flow equation is all there is to do, then this would just be a math problem—the solution of ODE’s.  There are plenty of gems for mathematicians to look for, and there is an entire of field of study in mathematics called “dynamical systems“, but this would not be “physics”.  Physics as a profession is separate and distinct from mathematics, although the two are sometimes confused.  Physics uses mathematics as its language and as its toolbox, but physics is not mathematics.  Physics is done best when it is done qualitatively—this means with scribbles done on napkins in restaurants or on the back of envelopes while waiting in line. Physics is about recognizing relationships and patterns. Physics is about identifying the limits to scaling properties where the physics changes when scales change. Physics is about the mapping of the simplest possible mathematics onto behavior in the physical world, and recognizing when the simplest possible mathematics is a universal that applies broadly to diverse systems that seem different, but that share the same underlying principles.

So, granted solving ODE’s is not physics, there is still a tremendous amount of good physics that can be done by solving ODE’s. ODE solvers become the modern physicist’s experimental workbench, providing data output from numerical experiments that can test the dependence on parameters in ways that real-world experiments might not be able to access. Physical intuition can be built based on such simulations as the engaged physicist begins to “understand” how the system behaves, able to explain what will happen as the values of parameters are changed.

In the follow sections, three examples of modern dynamics are introduced with a preliminary study, including Python code. These examples are: Galactic dynamics, synchronized networks and ecosystems. Despite their very different natures, their description using dynamical flows share features in common and illustrate the beauty and depth of behavior that can be explored with simple equations.

## Galactic Dynamics

One example of the power and beauty of the vector flow equation and its set of all solutions in phase space is called the Henon-Heiles model of the motion of a star within a galaxy.  Of course, this is a terribly complicated problem that involves tens of billions of stars, but if you average over the gravitational potential of all the other stars, and throw in a couple of conservation laws, the resulting potential can look surprisingly simple.  The motion in the plane of this galactic potential takes two configuration coordinates (x, y) with two associated momenta (px, py) for a total of four dimensions.  The flow equations in four-dimensional phase space are simply

where the terms in the light blue box describe a two-dimensional simple harmonic oscillator (SHO), which is a linear oscillator, modified by the terms in the magenta box that represent the nonlinear galactic potential.  The orbits of this Hamiltonian system are chaotic, and because there is no dissipation in the model, a single orbit will continue forever within certain ranges of phase space governed by energy conservation, but never quite repeating.

### Hamilton4D.py

```#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Hamilton4D.py
Created on Wed Apr 18 06:03:32 2018

@author: nolte

Derived from:
D. D. Nolte, Introduction to Modern Dynamics: Chaos, Networks, Space and Time, 2nd ed. (Oxford,2019)
"""

import numpy as np
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from scipy import integrate
from matplotlib import pyplot as plt
from matplotlib import cm
import time
import os

plt.close('all')

# model_case 1 = Heiles
# model_case 2 = Crescent
print(' ')
print('Hamilton4D.py')
print('Case: 1 = Heiles')
print('Case: 2 = Crescent')
model_case = int(input('Enter the Model Case (1-2)'))

if model_case == 1:
E = 1       # Heiles: 1, 0.3411   Crescent: 0.05, 1
epsE = 0.3411   # 3411
def flow_deriv(x_y_z_w,tspan):
x, y, z, w = x_y_z_w
a = z
b = w
c = -x - epsE*(2*x*y)
d = -y - epsE*(x**2 - y**2)
return[a,b,c,d]
else:
E = .1       #   Crescent: 0.1, 1
epsE = 1
def flow_deriv(x_y_z_w,tspan):
x, y, z, w = x_y_z_w
a = z
b = w
c = -(epsE*(y-2*x**2)*(-4*x) + x)
d = -(y-epsE*2*x**2)
return[a,b,c,d]

prms = np.sqrt(E)
pmax = np.sqrt(2*E)

# Potential Function
if model_case == 1:
V = np.zeros(shape=(100,100))
for xloop in range(100):
x = -2 + 4*xloop/100
for yloop in range(100):
y = -2 + 4*yloop/100
V[yloop,xloop] = 0.5*x**2 + 0.5*y**2 + epsE*(x**2*y - 0.33333*y**3)
else:
V = np.zeros(shape=(100,100))
for xloop in range(100):
x = -2 + 4*xloop/100
for yloop in range(100):
y = -2 + 4*yloop/100
V[yloop,xloop] = 0.5*x**2 + 0.5*y**2 + epsE*(2*x**4 - 2*x**2*y)

fig = plt.figure(1)
contr = plt.contourf(V,100, cmap=cm.coolwarm, vmin = 0, vmax = 10)
fig.colorbar(contr, shrink=0.5, aspect=5)
fig = plt.show()

repnum = 250
mulnum = 64/repnum

np.random.seed(1)
for reploop  in range(repnum):
px1 = 2*(np.random.random((1))-0.499)*pmax
py1 = np.sign(np.random.random((1))-0.499)*np.real(np.sqrt(2*(E-px1**2/2)))
xp1 = 0
yp1 = 0

x_y_z_w0 = [xp1, yp1, px1, py1]

tspan = np.linspace(1,1000,10000)
x_t = integrate.odeint(flow_deriv, x_y_z_w0, tspan)
siztmp = np.shape(x_t)
siz = siztmp[0]

if reploop % 50 == 0:
plt.figure(2)
lines = plt.plot(x_t[:,0],x_t[:,1])
plt.setp(lines, linewidth=0.5)
plt.show()
time.sleep(0.1)
#os.system("pause")

y1 = x_t[:,0]
y2 = x_t[:,1]
y3 = x_t[:,2]
y4 = x_t[:,3]

py = np.zeros(shape=(2*repnum,))
yvar = np.zeros(shape=(2*repnum,))
cnt = -1
last = y1[1]
for loop in range(2,siz):
if (last < 0)and(y1[loop] > 0):
cnt = cnt+1
del1 = -y1[loop-1]/(y1[loop] - y1[loop-1])
py[cnt] = y4[loop-1] + del1*(y4[loop]-y4[loop-1])
yvar[cnt] = y2[loop-1] + del1*(y2[loop]-y2[loop-1])
last = y1[loop]
else:
last = y1[loop]

plt.figure(3)
lines = plt.plot(yvar,py,'o',ms=1)
plt.show()

if model_case == 1:
plt.savefig('Heiles')
else:
plt.savefig('Crescent')

```

## Networks, Synchronization and Emergence

A central paradigm of nonlinear science is the emergence of patterns and organized behavior from seemingly random interactions among underlying constituents.  Emergent phenomena are among the most awe inspiring topics in science.  Crystals are emergent, forming slowly from solutions of reagents.  Life is emergent, arising out of the chaotic soup of organic molecules on Earth (or on some distant planet).  Intelligence is emergent, and so is consciousness, arising from the interactions among billions of neurons.  Ecosystems are emergent, based on competition and symbiosis among species.  Economies are emergent, based on the transfer of goods and money spanning scales from the local bodega to the global economy.

One of the common underlying properties of emergence is the existence of networks of interactions.  Networks and network science are topics of great current interest driven by the rise of the World Wide Web and social networks.  But networks are ubiquitous and have long been the topic of research into complex and nonlinear systems.  Networks provide a scaffold for understanding many of the emergent systems.  It allows one to think of isolated elements, like molecules or neurons, that interact with many others, like the neighbors in a crystal or distant synaptic connections.

From the point of view of modern dynamics, the state of a node can be a variable or a “dimension” and the interactions among links define the functions of the vector flow equation.  Emergence is then something that “emerges” from the dynamical flow as many elements interact through complex networks to produce simple or emergent patterns.

Synchronization is a form of emergence that happens when lots of independent oscillators, each vibrating at their own personal frequency, are coupled together to push and pull on each other, entraining all the individual frequencies into one common global oscillation of the entire system.  Synchronization plays an important role in the solar system, explaining why the Moon always shows one face to the Earth, why Saturn’s rings have gaps, and why asteroids are mainly kept away from colliding with the Earth.  Synchronization plays an even more important function in biology where it coordinates the beating of the heart and the functioning of the brain.

One of the most dramatic examples of synchronization is the Kuramoto synchronization phase transition. This occurs when a large set of individual oscillators with differing natural frequencies interact with each other through a weak nonlinear coupling.  For small coupling, all the individual nodes oscillate at their own frequency.  But as the coupling increases, there is a sudden coalescence of all the frequencies into a single common frequency.  This mechanical phase transition, called the Kuramoto transition, has many of the properties of a thermodynamic phase transition, including a solution that utilizes mean field theory.

The simulation of 20 Poncaré phase oscillators with global coupling is shown in Fig. 4 as a function of increasing coupling coefficient g. The original individual frequencies are spread randomly. The oscillators with similar frequencies are the first to synchronize, forming small clumps that then synchronize with other clumps of oscillators, until all oscillators are entrained to a single compromise frequency. The Kuramoto phase transition is not sharp in this case because the value of N = 20 is too small. If the simulation is run for 200 oscillators, there is a sudden transition from unsynchronized to synchronized oscillation at a threshold value of g.

The Kuramoto phase transition is one of the most important fundamental examples of modern dynamics because it illustrates many facets of nonlinear dynamics in a very simple way. It highlights the importance of nonlinearity, the simplification of phase oscillators, the use of mean field theory, the underlying structure of the network, and the example of a mechanical analog to a thermodynamic phase transition. It also has analytical solutions because of its simplicity, while still capturing the intrinsic complexity of nonlinear systems.

### Kuramoto.py

```#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat May 11 08:56:41 2019

@author: nolte

D. D. Nolte, Introduction to Modern Dynamics: Chaos, Networks, Space and Time, 2nd ed. (Oxford,2019)
"""

# https://www.python-course.eu/networkx.php
# https://networkx.github.io/documentation/stable/tutorial.html
# https://networkx.github.io/documentation/stable/reference/functions.html

import numpy as np
from scipy import integrate
from matplotlib import pyplot as plt
import networkx as nx
from UserFunction import linfit
import time

tstart = time.time()

plt.close('all')

Nfac = 25   # 25
N = 50      # 50
width = 0.2

# model_case 1 = complete graph (Kuramoto transition)
# model_case 2 = Erdos-Renyi
model_case = int(input('Input Model Case (1-2)'))
if model_case == 1:
facoef = 0.2
nodecouple = nx.complete_graph(N)
elif model_case == 2:
facoef = 5
nodecouple = nx.erdos_renyi_graph(N,0.1)

# function: omegout, yout = coupleN(G)
def coupleN(G):

# function: yd = flow_deriv(x_y)
def flow_deriv(y,t0):

yp = np.zeros(shape=(N,))
for omloop  in range(N):
temp = omega[omloop]
g = G.node[omloop]['coupling'][cloop]

temp = temp + g*np.sin(y[cindex]-y[omloop])

yp[omloop] = temp

yd = np.zeros(shape=(N,))
for omloop in range(N):
yd[omloop] = yp[omloop]

return yd
# end of function flow_deriv(x_y)

mnomega = 1.0

for nodeloop in range(N):
omega[nodeloop] = G.node[nodeloop]['element']

x_y_z = omega

# Settle-down Solve for the trajectories
tsettle = 100
t = np.linspace(0, tsettle, tsettle)
x_t = integrate.odeint(flow_deriv, x_y_z, t)
x0 = x_t[tsettle-1,0:N]

t = np.linspace(1,1000,1000)
y = integrate.odeint(flow_deriv, x0, t)
siztmp = np.shape(y)
sy = siztmp[0]

# Fit the frequency
m = np.zeros(shape = (N,))
w = np.zeros(shape = (N,))
mtmp = np.zeros(shape=(4,))
btmp = np.zeros(shape=(4,))
for omloop in range(N):

if np.remainder(sy,4) == 0:
mtmp[0],btmp[0] = linfit(t[0:sy//2],y[0:sy//2,omloop]);
mtmp[1],btmp[1] = linfit(t[sy//2+1:sy],y[sy//2+1:sy,omloop]);
mtmp[2],btmp[2] = linfit(t[sy//4+1:3*sy//4],y[sy//4+1:3*sy//4,omloop]);
mtmp[3],btmp[3] = linfit(t,y[:,omloop]);
else:
sytmp = 4*np.floor(sy/4);
mtmp[0],btmp[0] = linfit(t[0:sytmp//2],y[0:sytmp//2,omloop]);
mtmp[1],btmp[1] = linfit(t[sytmp//2+1:sytmp],y[sytmp//2+1:sytmp,omloop]);
mtmp[2],btmp[2] = linfit(t[sytmp//4+1:3*sytmp/4],y[sytmp//4+1:3*sytmp//4,omloop]);
mtmp[3],btmp[3] = linfit(t[0:sytmp],y[0:sytmp,omloop]);

#m[omloop] = np.median(mtmp)
m[omloop] = np.mean(mtmp)

w[omloop] = mnomega + m[omloop]

omegout = m
yout = y

return omegout, yout
# end of function: omegout, yout = coupleN(G)

omega = np.zeros(shape=(N,))
omegatemp = width*(np.random.rand(N)-1)
meanomega = np.mean(omegatemp)
omega = omegatemp - meanomega
sto = np.std(omega)

lnk = np.zeros(shape = (N,), dtype=int)
for loop in range(N):
nodecouple.node[loop]['element'] = omega[loop]
lnk[loop] = np.size(list(nx.neighbors(nodecouple,loop)))

avgdegree = np.mean(lnk)
mnomega = 1

facval = np.zeros(shape = (Nfac,))
yy = np.zeros(shape=(Nfac,N))
xx = np.zeros(shape=(Nfac,))
for facloop in range(Nfac):
print(facloop)

fac = facoef*(16*facloop/(Nfac))*(1/(N-1))*sto/mnomega
for nodeloop in range(N):
nodecouple.node[nodeloop]['coupling'] = np.zeros(shape=(lnk[nodeloop],))

facval[facloop] = fac*avgdegree

omegout, yout = coupleN(nodecouple)                           # Here is the subfunction call for the flow

for omloop in range(N):
yy[facloop,omloop] = omegout[omloop]

xx[facloop] = facval[facloop]

plt.figure(1)
lines = plt.plot(xx,yy)
plt.setp(lines, linewidth=0.5)
plt.show()

elapsed_time = time.time() - tstart
print('elapsed time = ',format(elapsed_time,'.2f'),'secs')

```

## The Web of Life

Ecosystems are among the most complex systems on Earth.  The complex interactions among hundreds or thousands of species may lead to steady homeostasis in some cases, to growth and collapse in other cases, and to oscillations or chaos in yet others.  But the definition of species can be broad and abstract, referring to businesses and markets in economic ecosystems, or to cliches and acquaintances in social ecosystems, among many other examples.  These systems are governed by the laws of evolutionary dynamics that include fitness and survival as well as adaptation.

The dimensionality of the dynamical spaces for these systems extends to hundreds or thousands of dimensions—far too complex to visualize when thinking in four dimensions is already challenging.  Yet there are shared principles and common behaviors that emerge even here.  Many of these can be illustrated in a simple three-dimensional system that is represented by a triangular simplex that can be easily visualized, and then generalized back to ultra-high dimensions once they are understood.

A simplex is a closed (N-1)-dimensional geometric figure that describes a zero-sum game (game theory is an integral part of evolutionary dynamics) among N competing species.  For instance, a two-simplex is a triangle that captures the dynamics among three species.  Each vertex of the triangle represents the situation when the entire ecosystem is composed of a single species.  Anywhere inside the triangle represents the situation when all three species are present and interacting.

A classic model of interacting species is the replicator equation. It allows for a fitness-based proliferation and for trade-offs among the individual species. The replicator dynamics equations are shown in Fig. 5.

The population dynamics on the 2D simplex are shown in Fig. 6 for several different pay-off matrices. The matrix values are shown in color and help interpret the trajectories. For instance the simplex on the upper-right shows a fixed point center. This reflects the antisymmetric character of the pay-off matrix around the diagonal. The stable spiral on the lower-left has a nearly asymmetric pay-off matrix, but with unequal off-diagonal magnitudes. The other two cases show central saddle points with stable fixed points on the boundary. A very large variety of behaviors are possible for this very simple system. The Python program is shown in Trirep.py.

### Trirep.py

```#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
trirep.py
Created on Thu May  9 16:23:30 2019

@author: nolte

Derived from:
D. D. Nolte, Introduction to Modern Dynamics: Chaos, Networks, Space and Time, 2nd ed. (Oxford,2019)
"""

import numpy as np
from scipy import integrate
from matplotlib import pyplot as plt

plt.close('all')

def tripartite(x,y,z):

sm = x + y + z
xp = x/sm
yp = y/sm

f = np.sqrt(3)/2

y0 = f*xp
x0 = -0.5*xp - yp + 1;

plt.figure(2)
lines = plt.plot(x0,y0)
plt.setp(lines, linewidth=0.5)
plt.plot([0, 1],[0, 0],'k',linewidth=1)
plt.plot([0, 0.5],[0, f],'k',linewidth=1)
plt.plot([1, 0.5],[0, f],'k',linewidth=1)
plt.show()

def solve_flow(y,tspan):
def flow_deriv(y, t0):
#"""Compute the time-derivative ."""

f = np.zeros(shape=(N,))
for iloop in range(N):
ftemp = 0
for jloop in range(N):
ftemp = ftemp + A[iloop,jloop]*y[jloop]
f[iloop] = ftemp

phitemp = phi0          # Can adjust this from 0 to 1 to stabilize (but Nth population is no longer independent)
for loop in range(N):
phitemp = phitemp + f[loop]*y[loop]
phi = phitemp

yd = np.zeros(shape=(N,))
for loop in range(N-1):
yd[loop] = y[loop]*(f[loop] - phi);

if np.abs(phi0) < 0.01:             # average fitness maintained at zero
yd[N-1] = y[N-1]*(f[N-1]-phi);
else:                                     # non-zero average fitness
ydtemp = 0
for loop in range(N-1):
ydtemp = ydtemp - yd[loop]
yd[N-1] = ydtemp

return yd

# Solve for the trajectories
t = np.linspace(0, tspan, 701)
x_t = integrate.odeint(flow_deriv,y,t)
return t, x_t

# model_case 1 = zero diagonal
# model_case 2 = zero trace
# model_case 3 = asymmetric (zero trace)
print(' ')
print('trirep.py')
print('Case: 1 = antisymm zero diagonal')
print('Case: 2 = antisymm zero trace')
print('Case: 3 = random')
model_case = int(input('Enter the Model Case (1-3)'))

N = 3
asymm = 3      # 1 = zero diag (replicator eqn)   2 = zero trace (autocatylitic model)  3 = random (but zero trace)
phi0 = 0.001            # average fitness (positive number) damps oscillations
T = 100;

if model_case == 1:
Atemp = np.zeros(shape=(N,N))
for yloop in range(N):
for xloop in range(yloop+1,N):
Atemp[yloop,xloop] = 2*(0.5 - np.random.random(1))
Atemp[xloop,yloop] = -Atemp[yloop,xloop]

if model_case == 2:
Atemp = np.zeros(shape=(N,N))
for yloop in range(N):
for xloop in range(yloop+1,N):
Atemp[yloop,xloop] = 2*(0.5 - np.random.random(1))
Atemp[xloop,yloop] = -Atemp[yloop,xloop]
Atemp[yloop,yloop] = 2*(0.5 - np.random.random(1))
tr = np.trace(Atemp)
A = Atemp
for yloop in range(N):
A[yloop,yloop] = Atemp[yloop,yloop] - tr/N

else:
Atemp = np.zeros(shape=(N,N))
for yloop in range(N):
for xloop in range(N):
Atemp[yloop,xloop] = 2*(0.5 - np.random.random(1))

tr = np.trace(Atemp)
A = Atemp
for yloop in range(N):
A[yloop,yloop] = Atemp[yloop,yloop] - tr/N

plt.figure(3)
im = plt.matshow(A,3,cmap=plt.cm.get_cmap('seismic'))  # hsv, seismic, bwr
cbar = im.figure.colorbar(im)

M = 20
delt = 1/M
ep = 0.01;

tempx = np.zeros(shape = (3,))
for xloop in range(M):
tempx[0] = delt*(xloop)+ep;
for yloop in range(M-xloop):
tempx[1] = delt*yloop+ep
tempx[2] = 1 - tempx[0] - tempx[1]

x0 = tempx/np.sum(tempx);          # initial populations

tspan = 70
t, x_t = solve_flow(x0,tspan)

y1 = x_t[:,0]
y2 = x_t[:,1]
y3 = x_t[:,2]

plt.figure(1)
lines = plt.plot(t,y1,t,y2,t,y3)
plt.setp(lines, linewidth=0.5)
plt.show()
plt.ylabel('X Position')
plt.xlabel('Time')

tripartite(y1,y2,y3)
```

## Topics in Modern Dynamics

These three examples are just the tip of the iceberg. The topics in modern dynamics are almost numberless. Any system that changes in time is a potential object of study in modern dynamics. Here is a list of a few topics that spring to mind.

## Bibliography

D. D. Nolte, Introduction to Modern Dynamics: Chaos, Networks, Space and Time, 2nd Ed. (Oxford University Press, 2019) (The physics and the derivations of the equations for the examples in this blog can be found here.)

D. D. Nolte, Galileo Unbound: A Path Across Life, the Universe and Everything (Oxford University Press, 2018) (The historical origins of the examples in this blog can be found here.)

# Science 1916: Schwarzschild, Einstein, Planck, Born, Frobenius et al.

In one of my previous blog posts, as I was searching for Schwarzschild’s original papers on Einstein’s field equations and quantum theory, I obtained a copy of the January 1916 – June 1916 volume of the Proceedings of the Royal Prussian Academy of Sciences through interlibrary loan.  The extremely thick volume arrived at Purdue about a week after I ordered it online.  It arrived from Oberlin College in Ohio that had received it as a gift in 1928 from the library of Professor Friedrich Loofs of the University of Halle in Germany.  Loofs had been the Haskell Lecturer at Oberlin for the 1911-1912 semesters.

As I browsed through the volume looking for Schwarzschild’s papers, I was amused to find a cornucopia of turn-of-the-century science topics recorded in its pages.  There were papers on the overbite and lips of marsupials.  There were papers on forgotten languages.  There were papers on ancient Greek texts.  On the origins of religion.  On the philosophy of abstraction.  Histories of Indian dramas.  Reflections on cancer.  But what I found most amazing was a snapshot of the field of physics and mathematics in 1916, with historic papers by historic scientists who changed how we view the world. Here is a snapshot in time and in space, a period of only six months from a single journal, containing papers from authors that reads like a who’s who of physics.

In 1916 there were three major centers of science in the world with leading science publications: London with the Philosophical Magazine and Proceedings of the Royal Society; Paris with the Comptes Rendus of the Académie des Sciences; and Berlin with the Proceedings of the Royal Prussian Academy of Sciences and Annalen der Physik. In Russia, there were the scientific Journals of St. Petersburg, but the Bolshevik Revolution was brewing that would overwhelm that country for decades.  And in 1916 the academic life of the United States was barely worth noticing except for a few points of light at Yale and Johns Hopkins.

Berlin in 1916 was embroiled in war, but science proceeded relatively unmolested.  The six-month volume of the Proceedings of the Royal Prussian Academy of Sciences contains a number of gems.  Schwarzschild was one of the most prolific contributors, publishing three papers in just this half-year volume, plus his obituary written by Einstein.  But joining Schwarzschild in this volume were Einstein, Planck, Born, Warburg, Frobenious, and Rubens among others—a pantheon of German scientists mostly cut off from the rest of the world at that time, but single-mindedly following their individual threads woven deep into the fabric of the physical world.

## Karl Schwarzschild (1873 – 1916)

Schwarzschild had the unenviable yet effective motivation of his impending death to spur him to complete several projects that he must have known would make his name immortal.  In this six-month volume he published his three most important papers.  The first (pg. 189) was on the exact solution to Einstein’s field equations to general relativity.  The solution was for the restricted case of a point mass, yet the derivation yielded the Schwarzschild radius that later became known as the event horizon of a non-roatating black hole.  The second paper (pg. 424) expanded the general relativity solutions to a spherically symmetric incompressible liquid mass.

The subject, content and success of these two papers was wholly unexpected from this observational astronomer stationed on the Russian Front during WWI calculating trajectories for German bombardments.  He would not have been considered a theoretical physicist but for the importance of his results and the sophistication of his methods.  Within only a year after Einstein published his general theory, based as it was on the complicated tensor calculus of Levi-Civita, Christoffel and Ricci-Curbastro that had taken him years to master, Schwarzschild found a solution that evaded even Einstein.

Schwarzschild’s third and final paper (pg. 548) was on an entirely different topic, still not in his official field of astronomy, that positioned all future theoretical work in quantum physics to be phrased in the language of Hamiltonian dynamics and phase space.  He proved that action-angle coordinates were the only acceptable canonical coordinates to be used when quantizing dynamical systems.  This paper answered a central question that had been nagging Bohr and Einstein and Ehrenfest for years—how to quantize dynamical coordinates.  Despite the simple way that Bohr’s quantized hydrogen atom is taught in modern physics, there was an ambiguity in the quantization conditions even for this simple single-electron atom.  The ambiguity arose from the numerous possible canonical coordinate transformations that were admissible, yet which led to different forms of quantized motion.

Schwarzschild’s doctoral thesis had been a theoretical topic in astrophysics that applied the celestial mechanics theories of Henri Poincaré to binary star systems.  Within Poincaré’s theory were integral invariants that were conserved quantities of the motion.  When a dynamical system had as many constraints as degrees of freedom, then every coordinate had an integral invariant.  In this unexpected last paper from Schwarzschild, he showed how canonical transformation to action-angle coordinates produced a unique representation in terms of action variables (whose dimensions are the same as Planck’s constant).  These action coordinates, with their associated cyclical angle variables, are the only unambiguous representations that can be quantized.  The important points of this paper were amplified a few months later in a publication by Schwarzschild’s friend Paul Epstein (1871 – 1939), solidifying this approach to quantum mechanics.  Paul Ehrenfest (1880 – 1933) continued this work later in 1916 by defining adiabatic invariants whose quantum numbers remain unchanged under slowly varying conditions, and the program started by Schwarzschild was definitively completed by Paul Dirac (1902 – 1984) at the dawn of quantum mechanics in Göttingen in 1925.

## Albert Einstein (1879 – 1955)

In 1916 Einstein was mopping up after publishing his definitive field equations of general relativity the year before.  His interests were still cast wide, not restricted only to this latest project.  In the 1916 Jan. to June volume of the Prussian Academy Einstein published two papers.  Each is remarkably short relative to the other papers in the volume, yet the importance of the papers may stand in inverse proportion to their length.

The first paper (pg. 184) is placed right before Schwarzschild’s first paper on February 3.  The subject of the paper is the expression of Maxwell’s equations in four-dimensional space time.  It is notable and ironic that Einstein mentions Hermann Minkowski (1864 – 1909) in the first sentence of the paper.  When Minkowski proposed his bold structure of spacetime in 1908, Einstein had been one of his harshest critics, writing letters to the editor about the absurdity of thinking of space and time as a single interchangeable coordinate system.  This is ironic, because Einstein today is perhaps best known for the special relativity properties of spacetime, yet he was slow to adopt the spacetime viewpoint. Einstein only came around to spacetime when he realized around 1910 that a general approach to relativity required the mathematical structure of tensor manifolds, and Minkowski had provided just such a manifold—the pseudo-Riemannian manifold of space time.  Einstein subsequently adopted spacetime with a passion and became its greatest champion, calling out Minkowski where possible to give him his due, although he had already died tragically of a burst appendix in 1909.

The importance of Einstein’s paper hinges on his derivation of the electromagnetic field energy density using electromagnetic four vectors.  The energy density is part of the source term for his general relativity field equations.  Any form of energy density can warp spacetime, including electromagnetic field energy.  Furthermore, the Einstein field equations of general relativity are nonlinear as gravitational fields modify space and space modifies electromagnetic fields, producing a coupling between gravity and electromagnetism.  This coupling is implicit in the case of the bending of light by gravity, but Einstein’s paper from 1916 makes the connection explicit.

Einstein’s second paper (pg. 688) is even shorter and hence one of the most daring publications of his career.  Because the field equations of general relativity are nonlinear, they are not easy to solve exactly, and Einstein was exploring approximate solutions under conditions of slow speeds and weak fields.  In this “non-relativistic” limit the metric tensor separates into a Minkowski metric as a background on which a small metric perturbation remains.  This small perturbation has the properties of a wave equation for a disturbance of the gravitational field that propagates at the speed of light.  Hence, in the June 22 issue of the Prussian Academy in 1916, Einstein predicts the existence and the properties of gravitational waves.  Exactly one hundred years later in 2016, the LIGO collaboration announced the detection of gravitational waves generated by the merger of two black holes.

## Max Planck (1858 – 1947)

Max Planck was active as the secretary of the Prussian Academy in 1916 yet was still fully active in his research.  Although he had launched the quantum revolution with his quantum hypothesis of 1900, he was not a major proponent of quantum theory even as late as 1916.  His primary interests lay in thermodynamics and the origins of entropy, following the theoretical approaches of Ludwig Boltzmann (1844 – 1906).  In 1916 he was interested in how to best partition phase space as a way to count states and calculate entropy from first principles.  His paper in the 1916 volume (pg. 653) calculated the entropy for single-atom solids.

## Max Born (1882 – 1970)

Max Born was to be one of the leading champions of the quantum mechanical revolution based at the University of Göttingen in the 1920’s. But in 1916 he was on leave from the University of Berlin working on ranging for artillery.  Yet he still pursued his academic interests, like Schwarzschild.  On pg. 614 in the Proceedings of the Prussian Academy, Born published a paper on anisotropic liquids, such as liquid crystals and the effect of electric fields on them.  It is astonishing to think that so many of the flat-panel displays we have today, whether on our watches or smart phones, are technological descendants of work by Born at the beginning of his career.

## Ferdinand Frobenius (1849 – 1917)

Like Schwarzschild, Frobenius was at the end of his career in 1916 and would pass away one year later, but unlike Schwarzschild, his career had been a long one, receiving his doctorate under Weierstrass and exploring elliptic functions, differential equations, number theory and group theory.  One of the papers that established him in group theory appears in the May 4th issue on page 542 where he explores the series expansion of a group.

## Heinrich Rubens (1865 – 1922)

Max Planck owed his quantum breakthrough in part to the exquisitely accurate experimental measurements made by Heinrich Rubens on black body radiation.  It was only by the precise shape of what came to be called the Planck spectrum that Planck could say with such confidence that his theory of quantized radiation interactions fit Rubens spectrum so perfectly.  In 1916 Rubens was at the University of Berlin, having taken the position vacated by Paul Drude in 1906.  He was a specialist in infrared spectroscopy, and on page 167 of the Proceedings he describes the spectrum of steam and its consequences for the quantum theory.

## Emil Warburg (1946 – 1931)

Emil Warburg’s fame is primarily as the father of Otto Warburg who won the 1931 Nobel prize in physiology.  On page 314 Warburg reports on photochemical processes in BrH gases.     In an obscure and very indirect way, I am an academic descendant of Emil Warburg.  One of his students was Robert Pohl who was a famous early researcher in solid state physics, sometimes called the “father of solid state physics”.  Pohl was at the physics department in Göttingen in the 1920’s along with Born and Franck during the golden age of quantum mechanics.  Robert Pohl’s son, Robert Otto Pohl, was my professor when I was a sophomore at Cornell University in 1978 for the course on introductory electromagnetism using a textbook by the Nobel laureate Edward Purcell, a quirky volume of the Berkeley Series of physics textbooks.  This makes Emil Warburg my professor’s father’s professor.

## Papers in the 1916 Vol. 1 of the Prussian Academy of Sciences

Schulze,  Alt– und Neuindisches

Orth,  Zur Frage nach den Beziehungen des Alkoholismus zur Tuberkulose

Schulze,  Die Erhabunen auf der Lippin- und Wangenschleimhaut der Säugetiere

von Wilamwitz-Moellendorff, Die Samie des Menandros

Engler,  Bericht über das >>Pflanzenreich<<

von Harnack,  Bericht über die Ausgabe der griechischen Kirchenväter der dri ersten Jahrhunderte

Meinecke,  Germanischer und romanischer Geist im Wandel der deutschen Geschichtsauffassung

Rubens und Hettner,  Das langwellige Wasserdampfspektrum und seine Deutung durch die Quantentheorie

Einstein,  Eine neue formale Deutung der Maxwellschen Feldgleichungen der Electrodynamic

Schwarschild,  Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie

Helmreich,  Handschriftliche Verbesserungen zu dem Hippokratesglossar des Galen

Prager,  Über die Periode des veränderlichen Sterns RR Lyrae

Holl,  Die Zeitfolge des ersten origenistischen Streits

Lüders,  Zu den Upanisads. I. Die Samvargavidya

Warburg,  Über den Energieumsatz bei photochemischen Vorgängen in Gasen. VI.

Hellman,  Über die ägyptischen Witterungsangaben im Kalender von Claudius Ptolemaeus

Meyer-Lübke,  Die Diphthonge im Provenzaslischen

Diels,  Über die Schrift Antipocras des Nikolaus von Polen

Müller und Sieg,  Maitrisimit und >>Tocharisch<<

Meyer,  Ein altirischer Heilsegen

Schwarzschild,  Über das Gravitationasfeld einer Kugel aus inkompressibler Flüssigkeit nach der Einsteinschen Theorie

Brauer,  Die Verbreitung der Hyracoiden

Correns,  Untersuchungen über Geschlechtsbestimmung bei Distelarten

Brahn,  Weitere Untersuchungen über Fermente in der Lever von Krebskranken

Erdmann,  Methodologische Konsequenzen aus der Theorie der Abstraktion

Bang,  Studien zur vergleichenden Grammatik der Türksprachen. I.

Frobenius,  Über die  Kompositionsreihe einer Gruppe

Schwarzschild,  Zur Quantenhypothese

Fischer und Bergmann,  Über neue Galloylderivate des Traubenzuckers und ihren Vergleich mit der Chebulinsäure

Schuchhardt,  Der starke Wall und die breite, zuweilen erhöhte Berme bei frügeschichtlichen Burgen in Norddeutschland

Born,  Über anisotrope Flüssigkeiten

Planck,  Über die absolute Entropie einatomiger Körper

Haberlandt,  Blattepidermis und Lichtperzeption

Einstein,  Näherungsweise Integration der Feldgleichungen der Gravitation

Lüders,  Die Saubhikas.  Ein Beitrag zur Gecschichte des indischen Dramas